diff options
| author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-08 14:22:43 +0000 | 
|---|---|---|
| committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-08 14:22:43 +0000 | 
| commit | 49761c3730e2ddf2ec40c84952572c43e9334ccb (patch) | |
| tree | ca76282ad2a8ce7c67d55efb462ec9efa8ae8f21 /demos | |
| parent | 47693d15132130513f8d0f74fd4831a3bbf69159 (diff) | |
| download | regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.gz regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.bz2 regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.xz regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.zip  | |
SBTV,LLTROF completed
Diffstat (limited to 'demos')
| -rw-r--r-- | demos/demo_cpu_regularisers.py | 89 | ||||
| -rw-r--r-- | demos/demo_cpu_regularisers3D.py | 69 | ||||
| -rw-r--r-- | demos/demo_gpu_regularisers.py | 84 | ||||
| -rw-r--r-- | demos/demo_gpu_regularisers3D.py | 61 | 
4 files changed, 146 insertions, 157 deletions
diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py index 4866811..f2d2f33 100644 --- a/demos/demo_cpu_regularisers.py +++ b/demos/demo_cpu_regularisers.py @@ -32,7 +32,7 @@ def printParametersToString(pars):  ###############################################################################  #filename = os.path.join( "data" ,"lena_gray_512.tif") -filename = "/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif" +filename = "/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"  # read image  Im = plt.imread(filename) @@ -130,14 +130,14 @@ imgplot = plt.imshow(u0,cmap="gray")  pars = {'algorithm' : FGP_TV, \          'input' : u0,\          'regularisation_parameter':0.02, \ -        'number_of_iterations' :200 ,\ +        'number_of_iterations' :400 ,\          'tolerance_constant':1e-06,\          'methodTV': 0 ,\          'nonneg': 0}  print ("#############FGP TV CPU####################")  start_time = timeit.default_timer() -fgp_cpu,info_vec_cpu = FGP_TV(pars['input'],  +(fgp_cpu,info_vec_cpu) = FGP_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],  @@ -175,21 +175,18 @@ imgplot = plt.imshow(u0,cmap="gray")  # set parameters  pars = {'algorithm' : SB_TV, \          'input' : u0,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :150 ,\ +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :250 ,\          'tolerance_constant':1e-06,\ -        'methodTV': 0 ,\ -        'printingOut': 0  -        } +        'methodTV': 0}  print ("#############SB TV CPU####################")  start_time = timeit.default_timer() -sb_cpu = SB_TV(pars['input'],  +(sb_cpu,info_vec_cpu) = SB_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],  -              pars['methodTV'], -              pars['printingOut'],'cpu')   +              pars['methodTV'],'cpu')  Qtools = QualityTools(Im, sb_cpu)  pars['rmse'] = Qtools.rmse() @@ -209,37 +206,35 @@ plt.title('{}'.format('CPU results'))  #%%  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____Total Generalised Variation (2D)______") +print ("______________LLT- ROF (2D)________________")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  ## plot   fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the CPU') +plt.suptitle('Performance of LLT-ROF regulariser using the CPU')  a=fig.add_subplot(1,2,1)  a.set_title('Noisy Image')  imgplot = plt.imshow(u0,cmap="gray")  # set parameters -pars = {'algorithm' : TGV, \ +pars = {'algorithm' : LLT_ROF, \          'input' : u0,\ -        'regularisation_parameter':0.04, \ -        'alpha1':1.0,\ -        'alpha0':2.0,\ -        'number_of_iterations' :1350 ,\ -        'LipshitzConstant' :12 ,\ -        } +        'regularisation_parameterROF':0.01, \ +        'regularisation_parameterLLT':0.0085, \ +        'number_of_iterations' :6000 ,\ +        'time_marching_parameter' :0.001 ,\ +        'tolerance_constant':1e-06} -print ("#############TGV CPU####################") +print ("#############LLT- ROF CPU####################")  start_time = timeit.default_timer() -tgv_cpu = TGV(pars['input'],  -              pars['regularisation_parameter'], -              pars['alpha1'], -              pars['alpha0'], +(lltrof_cpu,info_vec_cpu) = LLT_ROF(pars['input'],  +              pars['regularisation_parameterROF'], +              pars['regularisation_parameterLLT'],                pars['number_of_iterations'], -              pars['LipshitzConstant'],'cpu') -              -              -Qtools = QualityTools(Im, tgv_cpu) +              pars['time_marching_parameter'], +              pars['tolerance_constant'], 'cpu') + +Qtools = QualityTools(Im, lltrof_cpu)  pars['rmse'] = Qtools.rmse()  txtstr = printParametersToString(pars) @@ -252,40 +247,42 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)  # place a text box in upper left in axes coords  a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,           verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_cpu, cmap="gray") +imgplot = plt.imshow(lltrof_cpu, cmap="gray")  plt.title('{}'.format('CPU results'))  #%% -  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("______________LLT- ROF (2D)________________") +print ("_____Total Generalised Variation (2D)______")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  ## plot   fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the CPU') +plt.suptitle('Performance of TGV regulariser using the CPU')  a=fig.add_subplot(1,2,1)  a.set_title('Noisy Image')  imgplot = plt.imshow(u0,cmap="gray")  # set parameters -pars = {'algorithm' : LLT_ROF, \ +pars = {'algorithm' : TGV, \          'input' : u0,\ -        'regularisation_parameterROF':0.04, \ -        'regularisation_parameterLLT':0.01, \ -        'number_of_iterations' :500 ,\ -        'time_marching_parameter' :0.0025 ,\ +        'regularisation_parameter':0.04, \ +        'alpha1':1.0,\ +        'alpha0':2.0,\ +        'number_of_iterations' :1350 ,\ +        'LipshitzConstant' :12 ,\          } -print ("#############LLT- ROF CPU####################") +print ("#############TGV CPU####################")  start_time = timeit.default_timer() -lltrof_cpu = LLT_ROF(pars['input'],  -              pars['regularisation_parameterROF'], -              pars['regularisation_parameterLLT'], +tgv_cpu = TGV(pars['input'],  +              pars['regularisation_parameter'], +              pars['alpha1'], +              pars['alpha0'],                pars['number_of_iterations'], -              pars['time_marching_parameter'],'cpu') - -Qtools = QualityTools(Im, lltrof_cpu) +              pars['LipshitzConstant'],'cpu') +              +              +Qtools = QualityTools(Im, tgv_cpu)  pars['rmse'] = Qtools.rmse()  txtstr = printParametersToString(pars) @@ -298,7 +295,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)  # place a text box in upper left in axes coords  a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,           verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_cpu, cmap="gray") +imgplot = plt.imshow(tgv_cpu, cmap="gray")  plt.title('{}'.format('CPU results'))  #%% diff --git a/demos/demo_cpu_regularisers3D.py b/demos/demo_cpu_regularisers3D.py index fd6c545..0f9cd1a 100644 --- a/demos/demo_cpu_regularisers3D.py +++ b/demos/demo_cpu_regularisers3D.py @@ -29,8 +29,9 @@ def printParametersToString(pars):              txt += '\n'          return txt  ############################################################################### -#%% -filename = os.path.join( "data" ,"lena_gray_512.tif") + +# filename = os.path.join( "data" ,"lena_gray_512.tif") +filename = "/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"  # read image  Im = plt.imread(filename) @@ -94,16 +95,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm': ROF_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04,\ -        'number_of_iterations': 500,\ -        'time_marching_parameter': 0.0025 -        } +        'regularisation_parameter':0.02,\ +        'number_of_iterations': 7000,\ +        'time_marching_parameter': 0.0007,\ +        'tolerance_constant':1e-06} +  print ("#############ROF TV CPU####################")  start_time = timeit.default_timer() -rof_cpu3D = ROF_TV(pars['input'], +(rof_cpu3D, info_vec_cpu) = ROF_TV(pars['input'],               pars['regularisation_parameter'],               pars['number_of_iterations'], -             pars['time_marching_parameter'],'cpu') +             pars['time_marching_parameter'], +              pars['tolerance_constant'], 'cpu')  Qtools = QualityTools(idealVol, rof_cpu3D)  pars['rmse'] = Qtools.rmse() @@ -136,23 +139,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : FGP_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :300 ,\ -        'tolerance_constant':0.00001,\ +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :1000 ,\ +        'tolerance_constant':1e-06,\          'methodTV': 0 ,\ -        'nonneg': 0 ,\ -        'printingOut': 0  -        } -         -print ("#############FGP TV CPU####################") +        'nonneg': 0} + +print ("#############FGP TV GPU####################")  start_time = timeit.default_timer() -fgp_cpu3D = FGP_TV(pars['input'],  +(fgp_cpu3D, info_vec_cpu)  = FGP_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],                 pars['methodTV'], -              pars['nonneg'], -              pars['printingOut'],'cpu')   +              pars['nonneg'], 'cpu')  Qtools = QualityTools(idealVol, fgp_cpu3D)  pars['rmse'] = Qtools.rmse() @@ -185,22 +185,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : SB_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :150 ,\ -        'tolerance_constant':0.00001,\ -        'methodTV': 0 ,\ -        'printingOut': 0  -        } +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :250 ,\ +        'tolerance_constant':1e-06,\ +        'methodTV': 0}  print ("#############SB TV CPU####################")  start_time = timeit.default_timer() -sb_cpu3D = SB_TV(pars['input'],  +(sb_cpu3D, info_vec_cpu) = SB_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],  -              pars['methodTV'], -              pars['printingOut'],'cpu') -              +              pars['methodTV'],'cpu')  Qtools = QualityTools(idealVol, sb_cpu3D)  pars['rmse'] = Qtools.rmse() @@ -234,19 +230,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : LLT_ROF, \          'input' : noisyVol,\ -        'regularisation_parameterROF':0.04, \ -        'regularisation_parameterLLT':0.015, \ -        'number_of_iterations' :300 ,\ -        'time_marching_parameter' :0.0025 ,\ -        } +        'regularisation_parameterROF':0.01, \ +        'regularisation_parameterLLT':0.008, \ +        'number_of_iterations' :500 ,\ +        'time_marching_parameter' :0.001 ,\ +        'tolerance_constant':1e-06}  print ("#############LLT ROF CPU####################")  start_time = timeit.default_timer() -lltrof_cpu3D = LLT_ROF(pars['input'],  +(lltrof_cpu3D,info_vec_cpu) = LLT_ROF(pars['input'],                 pars['regularisation_parameterROF'],                pars['regularisation_parameterLLT'],                pars['number_of_iterations'], -              pars['time_marching_parameter'],'cpu') +              pars['time_marching_parameter'], +              pars['tolerance_constant'], 'cpu')  Qtools = QualityTools(idealVol, lltrof_cpu3D) diff --git a/demos/demo_gpu_regularisers.py b/demos/demo_gpu_regularisers.py index 212ad5a..6aec283 100644 --- a/demos/demo_gpu_regularisers.py +++ b/demos/demo_gpu_regularisers.py @@ -84,7 +84,7 @@ imgplot = plt.imshow(u0,cmap="gray")  pars = {'algorithm': ROF_TV, \          'input' : u0,\          'regularisation_parameter':0.02,\ -        'number_of_iterations': 5000,\ +        'number_of_iterations': 6000,\          'time_marching_parameter': 0.001,\          'tolerance_constant':1e-06} @@ -128,7 +128,7 @@ imgplot = plt.imshow(u0,cmap="gray")  pars = {'algorithm' : FGP_TV, \          'input' : u0,\          'regularisation_parameter':0.02, \ -        'number_of_iterations' :300 ,\ +        'number_of_iterations' :400 ,\          'tolerance_constant':1e-06,\          'methodTV': 0 ,\          'nonneg': 0} @@ -171,21 +171,18 @@ imgplot = plt.imshow(u0,cmap="gray")  # set parameters  pars = {'algorithm' : SB_TV, \          'input' : u0,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :150 ,\ +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :250 ,\          'tolerance_constant':1e-06,\ -        'methodTV': 0 ,\ -        'printingOut': 0  -        } +        'methodTV': 0}  print ("##############SB TV GPU##################")  start_time = timeit.default_timer() -sb_gpu = SB_TV(pars['input'],  +(sb_gpu, info_vec_gpu) = SB_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],  -              pars['methodTV'], -              pars['printingOut'],'gpu') +              pars['methodTV'], 'gpu')  Qtools = QualityTools(Im, sb_gpu)  pars['rmse'] = Qtools.rmse() @@ -205,36 +202,35 @@ plt.title('{}'.format('GPU results'))  #%%  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____Total Generalised Variation (2D)______") +print ("______________LLT- ROF (2D)________________")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  ## plot   fig = plt.figure() -plt.suptitle('Performance of TGV regulariser using the GPU') +plt.suptitle('Performance of LLT-ROF regulariser using the GPU')  a=fig.add_subplot(1,2,1)  a.set_title('Noisy Image')  imgplot = plt.imshow(u0,cmap="gray")  # set parameters -pars = {'algorithm' : TGV, \ +pars = {'algorithm' : LLT_ROF, \          'input' : u0,\ -        'regularisation_parameter':0.04, \ -        'alpha1':1.0,\ -        'alpha0':2.0,\ -        'number_of_iterations' :1250 ,\ -        'LipshitzConstant' :12 ,\ -        } +        'regularisation_parameterROF':0.01, \ +        'regularisation_parameterLLT':0.0085, \ +        'number_of_iterations' : 6000 ,\ +        'time_marching_parameter' :0.001 ,\ +        'tolerance_constant':1e-06} -print ("#############TGV CPU####################") +print ("#############LLT- ROF GPU####################")  start_time = timeit.default_timer() -tgv_gpu = TGV(pars['input'],  -              pars['regularisation_parameter'], -              pars['alpha1'], -              pars['alpha0'], +(lltrof_gpu, info_vec_gpu) = LLT_ROF(pars['input'],  +              pars['regularisation_parameterROF'], +              pars['regularisation_parameterLLT'],                pars['number_of_iterations'], -              pars['LipshitzConstant'],'gpu')   - -Qtools = QualityTools(Im, tgv_gpu) +              pars['time_marching_parameter'], +              pars['tolerance_constant'], 'gpu') +              +Qtools = QualityTools(Im, lltrof_gpu)  pars['rmse'] = Qtools.rmse()  txtstr = printParametersToString(pars)  txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) @@ -246,40 +242,42 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)  # place a text box in upper left in axes coords  a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,           verticalalignment='top', bbox=props) -imgplot = plt.imshow(tgv_gpu, cmap="gray") +imgplot = plt.imshow(lltrof_gpu, cmap="gray")  plt.title('{}'.format('GPU results'))  #%%  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("______________LLT- ROF (2D)________________") +print ("_____Total Generalised Variation (2D)______")  print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")  ## plot   fig = plt.figure() -plt.suptitle('Performance of LLT-ROF regulariser using the GPU') +plt.suptitle('Performance of TGV regulariser using the GPU')  a=fig.add_subplot(1,2,1)  a.set_title('Noisy Image')  imgplot = plt.imshow(u0,cmap="gray")  # set parameters -pars = {'algorithm' : LLT_ROF, \ +pars = {'algorithm' : TGV, \          'input' : u0,\ -        'regularisation_parameterROF':0.04, \ -        'regularisation_parameterLLT':0.01, \ -        'number_of_iterations' :500 ,\ -        'time_marching_parameter' :0.0025 ,\ +        'regularisation_parameter':0.04, \ +        'alpha1':1.0,\ +        'alpha0':2.0,\ +        'number_of_iterations' :1250 ,\ +        'LipshitzConstant' :12 ,\          } -print ("#############LLT- ROF GPU####################") +print ("#############TGV CPU####################")  start_time = timeit.default_timer() -lltrof_gpu = LLT_ROF(pars['input'],  -              pars['regularisation_parameterROF'], -              pars['regularisation_parameterLLT'], +tgv_gpu = TGV(pars['input'],  +              pars['regularisation_parameter'], +              pars['alpha1'], +              pars['alpha0'],                pars['number_of_iterations'], -              pars['time_marching_parameter'],'gpu') -              -Qtools = QualityTools(Im, lltrof_gpu) +              pars['LipshitzConstant'],'gpu')   + +Qtools = QualityTools(Im, tgv_gpu)  pars['rmse'] = Qtools.rmse()  txtstr = printParametersToString(pars)  txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) @@ -291,7 +289,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)  # place a text box in upper left in axes coords  a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,           verticalalignment='top', bbox=props) -imgplot = plt.imshow(lltrof_gpu, cmap="gray") +imgplot = plt.imshow(tgv_gpu, cmap="gray")  plt.title('{}'.format('GPU results'))  #%% diff --git a/demos/demo_gpu_regularisers3D.py b/demos/demo_gpu_regularisers3D.py index be16921..1a13c86 100644 --- a/demos/demo_gpu_regularisers3D.py +++ b/demos/demo_gpu_regularisers3D.py @@ -101,16 +101,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm': ROF_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04,\ -        'number_of_iterations': 500,\ -        'time_marching_parameter': 0.0025         -        } -print ("#############ROF TV GPU####################") +        'regularisation_parameter':0.02,\ +        'number_of_iterations': 7000,\ +        'time_marching_parameter': 0.0007,\ +        'tolerance_constant':1e-06} + +print ("#############ROF TV CPU####################")  start_time = timeit.default_timer() -rof_gpu3D = ROF_TV(pars['input'], +(rof_gpu3D, info_vec_gpu) = ROF_TV(pars['input'],               pars['regularisation_parameter'],               pars['number_of_iterations'], -             pars['time_marching_parameter'],'gpu') +             pars['time_marching_parameter'], +              pars['tolerance_constant'], 'gpu')  Qtools = QualityTools(idealVol, rof_gpu3D)  pars['rmse'] = Qtools.rmse() @@ -141,23 +143,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : FGP_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :300 ,\ -        'tolerance_constant':0.00001,\ +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :1000 ,\ +        'tolerance_constant':1e-06,\          'methodTV': 0 ,\ -        'nonneg': 0 ,\ -        'printingOut': 0  -        } +        'nonneg': 0}  print ("#############FGP TV GPU####################")  start_time = timeit.default_timer() -fgp_gpu3D = FGP_TV(pars['input'],  +(fgp_gpu3D, info_vec_gpu)  = FGP_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],                 pars['methodTV'], -              pars['nonneg'], -              pars['printingOut'],'gpu') +              pars['nonneg'], 'gpu')  Qtools = QualityTools(idealVol, fgp_gpu3D)  pars['rmse'] = Qtools.rmse() @@ -189,21 +188,18 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : SB_TV, \          'input' : noisyVol,\ -        'regularisation_parameter':0.04, \ -        'number_of_iterations' :100 ,\ -        'tolerance_constant':1e-05,\ -        'methodTV': 0 ,\ -        'printingOut': 0  -        } +        'regularisation_parameter':0.02, \ +        'number_of_iterations' :300 ,\ +        'tolerance_constant':1e-06,\ +        'methodTV': 0 }  print ("#############SB TV GPU####################")  start_time = timeit.default_timer() -sb_gpu3D = SB_TV(pars['input'],  +(sb_gpu3D, info_vec_gpu) = SB_TV(pars['input'],                 pars['regularisation_parameter'],                pars['number_of_iterations'],                pars['tolerance_constant'],  -              pars['methodTV'], -              pars['printingOut'],'gpu') +              pars['methodTV'],'gpu')  Qtools = QualityTools(idealVol, sb_gpu3D)  pars['rmse'] = Qtools.rmse() @@ -235,19 +231,20 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")  # set parameters  pars = {'algorithm' : LLT_ROF, \          'input' : noisyVol,\ -        'regularisation_parameterROF':0.04, \ -        'regularisation_parameterLLT':0.015, \ -        'number_of_iterations' :300 ,\ -        'time_marching_parameter' :0.0025 ,\ -        } +        'regularisation_parameterROF':0.01, \ +        'regularisation_parameterLLT':0.008, \ +        'number_of_iterations' : 500 ,\ +        'time_marching_parameter' :0.001 ,\ +        'tolerance_constant':1e-06}  print ("#############LLT ROF CPU####################")  start_time = timeit.default_timer() -lltrof_gpu3D = LLT_ROF(pars['input'],  +(lltrof_gpu3D,info_vec_gpu) = LLT_ROF(pars['input'],                 pars['regularisation_parameterROF'],                pars['regularisation_parameterLLT'],                pars['number_of_iterations'], -              pars['time_marching_parameter'],'gpu') +              pars['time_marching_parameter'], +              pars['tolerance_constant'], 'gpu')  Qtools = QualityTools(idealVol, lltrof_gpu3D)  pars['rmse'] = Qtools.rmse()  | 
