summaryrefslogtreecommitdiffstats
path: root/main_func
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-01-24 17:39:38 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-01-25 11:21:12 +0000
commit723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383 (patch)
treeb4351067e39021973b7f155a04cd967289ac9ddc /main_func
parent9ff389298a1dc4d94222cfcc6e9c6c945401af03 (diff)
downloadregularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.gz
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.bz2
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.xz
regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.zip
all Matlab related stuff have been moved to wrappers
Diffstat (limited to 'main_func')
-rw-r--r--main_func/FISTA_REC.m704
-rw-r--r--main_func/compile_mex.m11
-rw-r--r--main_func/regularizers_CPU/FGP_TV.c216
-rw-r--r--main_func/regularizers_CPU/FGP_TV_core.c266
-rw-r--r--main_func/regularizers_CPU/FGP_TV_core.h71
-rw-r--r--main_func/regularizers_CPU/LLT_model.c169
-rw-r--r--main_func/regularizers_CPU/LLT_model_core.c318
-rw-r--r--main_func/regularizers_CPU/LLT_model_core.h46
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul.c140
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul_core.c213
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul_core.h69
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV.c179
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV_core.c259
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV_core.h69
-rw-r--r--main_func/regularizers_CPU/TGV_PD.c144
-rw-r--r--main_func/regularizers_CPU/TGV_PD_core.c208
-rw-r--r--main_func/regularizers_CPU/TGV_PD_core.h67
-rw-r--r--main_func/regularizers_CPU/utils.c29
-rw-r--r--main_func/regularizers_CPU/utils.h32
-rw-r--r--main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp114
-rw-r--r--main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu270
-rw-r--r--main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h6
-rw-r--r--main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp171
-rw-r--r--main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu239
-rw-r--r--main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h6
-rw-r--r--main_func/studentst.m47
26 files changed, 0 insertions, 4063 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m
deleted file mode 100644
index d717a03..0000000
--- a/main_func/FISTA_REC.m
+++ /dev/null
@@ -1,704 +0,0 @@
-function [X, output] = FISTA_REC(params)
-
-% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>>
-% This code solves regularised PWLS problem using FISTA approach.
-% The code contains multiple regularisation penalties as well as it can be
-% accelerated by using ordered-subset version. Various projection
-% geometries supported.
-
-% DISCLAIMER
-% It is recommended to use ASTRA version 1.8 or later in order to avoid
-% crashing due to GPU memory overflow for big datasets
-
-% ___Input___:
-% params.[] file:
-%----------------General Parameters------------------------
-% - .proj_geom (geometry of the projector) [required]
-% - .vol_geom (geometry of the reconstructed object) [required]
-% - .sino (2D or 3D sinogram) [required]
-% - .iterFISTA (iterations for the main loop, default 40)
-% - .L_const (Lipschitz constant, default Power method) )
-% - .X_ideal (ideal image, if given)
-% - .weights (statisitcal weights for the PWLS model, size of the sinogram)
-% - .fidelity (use 'studentt' fidelity)
-% - .ROI (Region-of-interest, only if X_ideal is given)
-% - .initialize (a 'warm start' using SIRT method from ASTRA)
-%----------------Regularization choices------------------------
-% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
-% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
-% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
-% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
-% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter)
-% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 4.3 .Regul_PB_h (PB penalty function threshold)
-% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter)
-% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
-% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
-% 5.3 .Regul_PB_h (PB penalty function threshold)
-% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter)
-% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter)
-% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
-% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
-% - .Regul_Iterations (iterations for the selected penalty, default 25)
-% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
-%----------------Ring removal------------------------
-% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
-% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
-%----------------Visualization parameters------------------------
-% - .show (visualize reconstruction 1/0, (0 default))
-% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
-% - .slice (for 3D volumes - slice number to imshow)
-% ___Output___:
-% 1. X - reconstructed image/volume
-% 2. output - a structure with
-% - .Resid_error - residual error (if X_ideal is given)
-% - .objective: value of the objective function
-% - .L_const: Lipshitz constant to avoid recalculations
-
-% References:
-% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
-% Problems" by A. Beck and M Teboulle
-% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
-% 3. "A novel tomographic reconstruction method based on the robust
-% Student's t function for suppressing data outliers" D. Kazantsev et.al.
-% D. Kazantsev, 2016-17
-
-% Dealing with input parameters
-if (isfield(params,'proj_geom') == 0)
- error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
-else
- proj_geom = params.proj_geom;
-end
-if (isfield(params,'vol_geom') == 0)
- error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
-else
- vol_geom = params.vol_geom;
-end
-N = params.vol_geom.GridColCount;
-if (isfield(params,'sino'))
- sino = params.sino;
- [Detectors, anglesNumb, SlicesZ] = size(sino);
- fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
-else
- error('%s \n', 'Please provide a sinogram');
-end
-if (isfield(params,'iterFISTA'))
- iterFISTA = params.iterFISTA;
-else
- iterFISTA = 40;
-end
-if (isfield(params,'weights'))
- weights = params.weights;
-else
- weights = ones(size(sino));
-end
-if (isfield(params,'fidelity'))
- studentt = 0;
- if (strcmp(params.fidelity,'studentt') == 1)
- studentt = 1;
- end
-else
- studentt = 0;
-end
-if (isfield(params,'L_const'))
- L_const = params.L_const;
-else
- % using Power method (PM) to establish L constant
- fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...');
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % for 2D geometry we can do just one selected slice
- niter = 15; % number of iteration for the PM
- x1 = rand(N,N,1);
- sqweight = sqrt(weights(:,:,1));
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- for i = 1:niter
- [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1./s;
- [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y';
- astra_mex_data2d('delete', sino_id);
- end
- elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec'))
- % 3D geometry
- niter = 8; % number of iteration for PM
- x1 = rand(N,N,SlicesZ);
- sqweight = sqrt(weights);
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
-
- for i = 1:niter
- [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
- s = norm(x1(:));
- x1 = x1/s;
- [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
- y = sqweight.*y;
- astra_mex_data3d('delete', sino_id);
- astra_mex_data3d('delete', id);
- end
- clear x1
- else
- error('%s \n', 'No suitable geometry has been found!');
- end
- L_const = s;
-end
-if (isfield(params,'X_ideal'))
- X_ideal = params.X_ideal;
-else
- X_ideal = 'none';
-end
-if (isfield(params,'ROI'))
- ROI = params.ROI;
-else
- ROI = find(X_ideal>=0.0);
-end
-if (isfield(params,'Regul_Lambda_FGPTV'))
- lambdaFGP_TV = params.Regul_Lambda_FGPTV;
-else
- lambdaFGP_TV = 0;
-end
-if (isfield(params,'Regul_Lambda_SBTV'))
- lambdaSB_TV = params.Regul_Lambda_SBTV;
-else
- lambdaSB_TV = 0;
-end
-if (isfield(params,'Regul_tol'))
- tol = params.Regul_tol;
-else
- tol = 1.0e-05;
-end
-if (isfield(params,'Regul_Iterations'))
- IterationsRegul = params.Regul_Iterations;
-else
- IterationsRegul = 45;
-end
-if (isfield(params,'Regul_LambdaLLT'))
- lambdaHO = params.Regul_LambdaLLT;
-else
- lambdaHO = 0;
-end
-if (isfield(params,'Regul_iterHO'))
- iterHO = params.Regul_iterHO;
-else
- iterHO = 50;
-end
-if (isfield(params,'Regul_tauLLT'))
- tauHO = params.Regul_tauLLT;
-else
- tauHO = 0.0001;
-end
-if (isfield(params,'Regul_LambdaPatchBased_CPU'))
- lambdaPB = params.Regul_LambdaPatchBased_CPU;
-else
- lambdaPB = 0;
-end
-if (isfield(params,'Regul_LambdaPatchBased_GPU'))
- lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU;
-else
- lambdaPB_GPU = 0;
-end
-if (isfield(params,'Regul_PB_SearchW'))
- SearchW = params.Regul_PB_SearchW;
-else
- SearchW = 3; % default
-end
-if (isfield(params,'Regul_PB_SimilW'))
- SimilW = params.Regul_PB_SimilW;
-else
- SimilW = 1; % default
-end
-if (isfield(params,'Regul_PB_h'))
- h_PB = params.Regul_PB_h;
-else
- h_PB = 0.1; % default
-end
-if (isfield(params,'Regul_LambdaDiffHO'))
- LambdaDiff_HO = params.Regul_LambdaDiffHO;
-else
- LambdaDiff_HO = 0;
-end
-if (isfield(params,'Regul_DiffHO_EdgePar'))
- LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar;
-else
- LambdaDiff_HO_EdgePar = 0.01;
-end
-if (isfield(params,'Regul_LambdaTGV'))
- LambdaTGV = params.Regul_LambdaTGV;
-else
- LambdaTGV = 0;
-end
-if (isfield(params,'Ring_LambdaR_L1'))
- lambdaR_L1 = params.Ring_LambdaR_L1;
-else
- lambdaR_L1 = 0;
-end
-if (isfield(params,'Ring_Alpha'))
- alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
-else
- alpha_ring = 1;
-end
-if (isfield(params,'Regul_Dimension'))
- Dimension = params.Regul_Dimension;
- if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
- Dimension = '3D';
- end
-else
- Dimension = '3D';
-end
-if (isfield(params,'show'))
- show = params.show;
-else
- show = 0;
-end
-if (isfield(params,'maxvalplot'))
- maxvalplot = params.maxvalplot;
-else
- maxvalplot = 1;
-end
-if (isfield(params,'slice'))
- slice = params.slice;
-else
- slice = 1;
-end
-if (isfield(params,'initialize'))
- X = params.initialize;
- if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ))
- error('%s \n', 'The initialized volume has different dimensions!');
- end
-else
- X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
-end
-if (isfield(params,'subsets'))
- % Ordered Subsets reorganisation of data and angles
- subsets = params.subsets; % subsets number
- angles = proj_geom.ProjectionAngles;
- binEdges = linspace(min(angles),max(angles),subsets+1);
-
- % assign values to bins
- [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]);
-
- % get rearranged subset indices
- IndicesReorg = zeros(length(angles),1);
- counterM = 0;
- for ii = 1:max(binsDiscr(:))
- counter = 0;
- for jj = 1:subsets
- curr_index = ii+jj-1 + counter;
- if (binsDiscr(jj) >= ii)
- counterM = counterM + 1;
- IndicesReorg(counterM) = curr_index;
- end
- counter = (counter + binsDiscr(jj)) - 1;
- end
- end
-else
- subsets = 0; % Classical FISTA
-end
-
-%----------------Reconstruction part------------------------
-Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given)
-objective = zeros(iterFISTA,1); % objective function values vector
-
-
-if (subsets == 0)
- % Classical FISTA
- t = 1;
- X_t = X;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual = zeros(size(sino),'single');
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- X_old = X;
- t_old = t;
- r_old = r;
-
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- sino_updt = zeros(size(sino),'single');
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom);
- sino_updt(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % the ring removal part (Group-Huber fidelity)
- for kkk = 1:anglesNumb
- residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
- vec = sum(residual,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec;
- objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
- elseif (studentt > 0)
- % artifacts removal with Students t penalty
- residual = weights.*(sino_updt - sino);
- for kkk = 1:SlicesZ
- res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
- end
- objective(i) = ff; % for the objective function output
- else
- % no ring removal (LS model)
- residual = weights.*(sino_updt - sino);
- objective(i) = 0.5*norm(residual(:)); % for the objective function output
- end
-
- % if the geometry is 2D use slice-by-slice projection-backprojection routine
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
- astra_mex_data3d('delete', id);
- end
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
- end
- objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ);
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
- end
- X = 0.5.*(X + X2); % averaged combination of two solutions
-
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be very slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const);
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.8; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-
- if (lambdaR_L1 > 0)
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-else
- % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version)
- t = 1;
- X_t = X;
- proj_geomSUB = proj_geom;
-
- r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r; % another ring variable
- residual2 = zeros(size(sino),'single');
- sino_updt_FULL = zeros(size(sino),'single');
-
-
- % Outer FISTA iterations loop
- for i = 1:iterFISTA
-
- if ((i > 1) && (lambdaR_L1 > 0))
- % in order to make Group-Huber fidelity work with ordered subsets
- % we still need to work with full sinogram
-
- % the offset variable must be calculated for the whole
- % updated sinogram - sino_updt_FULL
- for kkk = 1:anglesNumb
- residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
- end
-
- r_old = r;
- vec = sum(residual2,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
- r = r_x - (1./L_const).*vec; % update ring variable
- end
-
- % subsets loop
- counterInd = 1;
- for ss = 1:subsets
- X_old = X;
- t_old = t;
-
- numProjSub = binsDiscr(ss); % the number of projections per subset
- sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single');
- CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset
- proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces);
-
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- for kkk = 1:SlicesZ
- [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom);
- sino_updt_Sub(:,:,kkk) = sinoT';
- astra_mex_data2d('delete', sino_id);
- end
- else
- % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
- [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', sino_id);
- end
-
- if (lambdaR_L1 > 0)
- % Group-Huber fidelity (ring removal)
- residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset
- for kkk = 1:numProjSub
- indC = CurrSubIndeces(kkk);
- residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
- sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
- end
-
- elseif (studentt > 0)
- % student t data fidelity
-
- % artifacts removal with Students t penalty
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
-
- for kkk = 1:SlicesZ
- res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec, 1);
- residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub);
- end
- objective(i) = ff; % for the objective function output
- else
- % PWLS model
- residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
- objective(i) = 0.5*norm(residualSub(:)); % for the objective function output
- end
-
- % perform backprojection of a subset
- if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
- % if geometry is 2D use slice-by-slice projection-backprojection routine
- x_temp = zeros(size(X),'single');
- for kkk = 1:SlicesZ
- [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom);
- end
- else
- [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom);
- astra_mex_data3d('delete', id);
- end
-
- X = X_t - (1/L_const).*x_temp;
-
- % ----------------Regularization part------------------------%
- if (lambdaFGP_TV > 0)
- % FGP-TV regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- else
- % 3D regularization
- [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
- end
- objective(i) = objective(i) + f_val;
- end
- if (lambdaSB_TV > 0)
- % Split Bregman regularization
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- else
- % 3D regularization
- X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
- end
- end
- if (lambdaHO > 0)
- % Higher Order (LLT) regularization
- X2 = zeros(N,N,SlicesZ,'single');
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- else
- % 3D regularization
- X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
- end
- X = 0.5.*(X + X2); % the averaged combination of two solutions
- end
- if (lambdaPB > 0)
- % Patch-Based regularization (can be slow on CPU)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- else
- X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
- end
- end
- if (lambdaPB_GPU > 0)
- % Patch-Based regularization (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- else
- X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
- end
- end
- if (LambdaDiff_HO > 0)
- % Higher-order diffusion penalty (GPU CUDA implementation)
- if ((strcmp('2D', Dimension) == 1))
- % 2D regularization
- for kkk = 1:SlicesZ
- X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- else
- X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
- end
- end
- if (LambdaTGV > 0)
- % Total Generalized variation (currently only 2D)
- lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
- lamTGV2 = 0.5; % second-order term
- for kkk = 1:SlicesZ
- X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul);
- end
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
- counterInd = counterInd + numProjSub;
- end
-
- if (i == 1)
- r_old = r;
- end
-
- % working with a 'ring vector'
- if (lambdaR_L1 > 0)
- r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
- r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
- end
-
- if (show == 1)
- figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
- if (lambdaR_L1 > 0)
- figure(11); plot(r); title('Rings offset vector')
- end
- pause(0.01);
- end
-
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
- end
-end
-
-output.Resid_error = Resid_error;
-output.objective = objective;
-output.L_const = L_const;
-
-end
diff --git a/main_func/compile_mex.m b/main_func/compile_mex.m
deleted file mode 100644
index 1353859..0000000
--- a/main_func/compile_mex.m
+++ /dev/null
@@ -1,11 +0,0 @@
-% compile mex's in Matlab once
-cd regularizers_CPU/
-
-mex LLT_model.c LLT_model_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex SplitBregman_TV.c SplitBregman_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex TGV_PD.c TGV_PD_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex PatchBased_Regul.c PatchBased_Regul_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-
-cd ../../
-cd demos
diff --git a/main_func/regularizers_CPU/FGP_TV.c b/main_func/regularizers_CPU/FGP_TV.c
deleted file mode 100644
index 30cea1a..0000000
--- a/main_func/regularizers_CPU/FGP_TV.c
+++ /dev/null
@@ -1,216 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon: tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * [1] Filtered/regularized image
- * [2] last function value
- *
- * Example of image denoising:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
- *
- * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- *
- * D. Kazantsev, 2016-17
- *
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
- float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 50; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- /*output function value (last iteration) */
- plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
- float *funcvalA = (float *) mxGetData(plhs[1]);
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- tk = 1.0f;
- tkp1=1.0f;
- count = 0;
- re_old = 0.0f;
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
-
- /* projection step */
- Proj_func2D(P1, P2, methTV, dimX, dimY);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
-
- /* calculate norm */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- break; }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- /* calculating the objective function value */
- if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
- if (number_of_dims == 3) {
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /* computing the gradient of the objective function */
- Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
- /* projection step */
- Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 3) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- break;}
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) {
- Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- copyIm(P3, P3_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
- }
- printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
- }
-}
diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/main_func/regularizers_CPU/FGP_TV_core.c
deleted file mode 100644
index 03cd445..0000000
--- a/main_func/regularizers_CPU/FGP_TV_core.c
+++ /dev/null
@@ -1,266 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon: tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * [1] Filtered/regularized image
- * [2] last function value
- *
- * Example of image denoising:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- *
- * D. Kazantsev, 2016-17
- *
- */
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY)
-{
- int i,j;
- float f1, f2, val1, val2;
-
- /*data-related term */
- f1 = 0.0f;
- for(i=0; i<dimX*dimY; i++) f1 += pow(D[i] - A[i],2);
-
- /*TV-related term */
- f2 = 0.0f;
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* boundary conditions */
- if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(i+1)*dimY + (j)] - A[(i)*dimY + (j)];}
- if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(i)*dimY + (j+1)] - A[(i)*dimY + (j)];}
- f2 += sqrt(pow(val1,2) + pow(val2,2));
- }}
-
- /* sum of two terms */
- funcvalA[0] = 0.5f*f1 + lambda*f2;
- return *funcvalA;
-}
-
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
-{
- float val1, val2;
- int i, j;
-#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* boundary conditions */
- if (i == 0) { val1 = 0.0f; }
- else { val1 = R1[(i - 1)*dimY + (j)]; }
- if (j == 0) { val2 = 0.0f; }
- else { val2 = R2[(i)*dimY + (j - 1)]; }
- D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
- }
- }
- return *D;
-}
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
-{
- float val1, val2, multip;
- int i, j;
- multip = (1.0f / (8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* boundary conditions */
- if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)];
- if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)];
- P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
- P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
- }
- }
- return 1;
-}
-float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
-{
- float val1, val2, denom;
- int i, j;
- if (methTV == 0) {
- /* isotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,j,denom)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2);
- if (denom > 1) {
- P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom);
- P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom);
- }
- }
- }
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- val1 = fabs(P1[(i)*dimY + (j)]);
- val2 = fabs(P2[(i)*dimY + (j)]);
- if (val1 < 1.0f) { val1 = 1.0f; }
- if (val2 < 1.0f) { val2 = 1.0f; }
- P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1;
- P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2;
- }
- }
- }
- return 1;
-}
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
-{
- int i, j;
- float multip;
- multip = ((tk - 1.0f) / tkp1);
-#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
- R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
- }
- }
- return 1;
-}
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ)
-{
- int i,j,k;
- float f1, f2, val1, val2, val3;
-
- /*data-related term */
- f1 = 0.0f;
- for(i=0; i<dimX*dimY*dimZ; i++) f1 += pow(D[i] - A[i],2);
-
- /*TV-related term */
- f2 = 0.0f;
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* boundary conditions */
- if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(dimX*dimY)*k + (i+1)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
- if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(dimX*dimY)*k + (i)*dimY + (j+1)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
- if (k == dimZ-1) {val3 = 0.0f;} else {val3 = A[(dimX*dimY)*(k+1) + (i)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
- f2 += sqrt(pow(val1,2) + pow(val2,2) + pow(val3,2));
- }}}
- /* sum of two terms */
- funcvalA[0] = 0.5f*f1 + lambda*f2;
- return *funcvalA;
-}
-
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i, j, k;
-#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- /* boundary conditions */
- if (i == 0) { val1 = 0.0f; }
- else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; }
- if (j == 0) { val2 = 0.0f; }
- else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; }
- if (k == 0) { val3 = 0.0f; }
- else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; }
- D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
- }
- }
- }
- return *D;
-}
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3, multip;
- int i, j, k;
- multip = (1.0f / (8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- /* boundary conditions */
- if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)];
- if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)];
- if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)];
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
- }
- }
- }
- return 1;
-}
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i, j, k;
-#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
- val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
- val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
- if (val1 < 1.0f) { val1 = 1.0f; }
- if (val2 < 1.0f) { val2 = 1.0f; }
- if (val3 < 1.0f) { val3 = 1.0f; }
-
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3;
- }
- }
- }
- return 1;
-}
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
-{
- int i, j, k;
- float multip;
- multip = ((tk - 1.0f) / tkp1);
-#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- }
- }
- }
- return 1;
-}
-
-
diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/main_func/regularizers_CPU/FGP_TV_core.h
deleted file mode 100644
index 6430bf2..0000000
--- a/main_func/regularizers_CPU/FGP_TV_core.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
-*
-* Input Parameters:
-* 1. Noisy image/volume [REQUIRED]
-* 2. lambda - regularization parameter [REQUIRED]
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon: tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-*
-* Output:
-* [1] Filtered/regularized image
-* [2] last function value
-*
-* Example of image denoising:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .05*randn(size(Im)); % adding noise
-* u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-*
-* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* This function is based on the Matlab's code and paper by
-* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
-*
-* D. Kazantsev, 2016-17
-*
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
-float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
-float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY);
-
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
-float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c
deleted file mode 100644
index 0b07b47..0000000
--- a/main_func/regularizers_CPU/LLT_model.c
+++ /dev/null
@@ -1,169 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "LLT_model_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
-*
-* Input Parameters:
-* 1. U0 - original noise image/volume
-* 2. lambda - regularization parameter
-* 3. tau - time-step for explicit scheme
-* 4. iter - iterations number
-* 5. epsil - tolerance constant (to terminate earlier)
-* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* [Den] = LLT_model(single(u0), 10, 0.1, 1);
-*
-*
-* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
-*
-* 28.11.16/Harwell
-*/
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher;
- const int *dim_array;
- float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old;
- unsigned short *Map=NULL;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- tau = (float) mxGetScalar(prhs[2]); /* time-step */
- iter = (int) mxGetScalar(prhs[3]); /*iterations number*/
- epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
- switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
-
- if (number_of_dims == 2) {
- /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- else if (number_of_dims == 3) {
- /*3D case*/
- dimZ = dim_array[2];
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- if (switcher != 0) {
- Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
- }
- }
- else {mexErrMsgTxt("The input data should be 2D or 3D");}
-
- /*Copy U0 to U*/
- copyIm(U0, U, dimX, dimY, dimZ);
-
- count = 1;
- re_old = 0.0f;
- if (number_of_dims == 2) {
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der2D(U, D1, D2, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
- /*3D version*/
- if (number_of_dims == 3) {
-
- if (switcher == 1) {
- /* apply restrictive smoothing */
- calcMap(U, Map, dimX, dimY, dimZ);
- /*clear outliers */
- cleanMap(Map, dimX, dimY, dimZ);
- }
- for(ll = 0; ll < iter; ll++) {
-
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*estimate inner derrivatives */
- der3D(U, D1, D2, D3, dimX, dimY, dimZ);
- /* calculate div^2 and update */
- div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
-
- } /*end of iterations*/
- printf("HO iterations stopped at iteration: %i\n", ll);
- }
-}
diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/main_func/regularizers_CPU/LLT_model_core.c
deleted file mode 100644
index 3a853d2..0000000
--- a/main_func/regularizers_CPU/LLT_model_core.c
+++ /dev/null
@@ -1,318 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "LLT_model_core.h"
-
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
-*
-* Input Parameters:
-* 1. U0 - origanal noise image/volume
-* 2. lambda - regularization parameter
-* 3. tau - time-step for explicit scheme
-* 4. iter - iterations number
-* 5. epsil - tolerance constant (to terminate earlier)
-* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* [Den] = LLT_model(single(u0), 10, 0.1, 1);
-*
-* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
-*
-* 28.11.16/Harwell
-*/
-
-
-float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float dxx, dyy, denom_xx, denom_yy;
-#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
- dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
-
- D1[i*dimY + j] = dxx / denom_xx;
- D2[i*dimY + j] = dyy / denom_yy;
- }
- }
- return 1;
-}
-float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float div, dxx, dyy;
-#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
- dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
-
- div = dxx + dyy;
-
- U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
- }
- }
- return *U0;
-}
-
-float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
-#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
- for (i = 0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for (j = 0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for (k = 0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
- dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
- dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
- denom_zz = fabs(dzz) + EPS;
-
- D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx;
- D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy;
- D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz;
-
- }
- }
- }
- return 1;
-}
-
-float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float div, dxx, dyy, dzz;
-#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
- for (i = 0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for (j = 0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for (k = 0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
- // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
- // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-
- dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
- dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
- dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
-
- if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
- div = dxx + dyy + dzz;
-
- // if (switcher == 1) {
- // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
- //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
- // div = dzz + dzz2;
- // }
-
- // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
- // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
- // div = dzz + dzz2;
-
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
- }
- }
- }
- return *U0;
-}
-
-// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
-// {
-// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
-// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
-// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
-// for(i=0; i<dimX; i++) {
-// /* symmetric boundary conditions (Neuman) */
-// i_p = i + 1; if (i_p == dimX) i_p = i - 1;
-// i_m = i - 1; if (i_m < 0) i_m = i + 1;
-// for(j=0; j<dimY; j++) {
-// j_p = j + 1; if (j_p == dimY) j_p = j - 1;
-// j_m = j - 1; if (j_m < 0) j_m = j + 1;
-// for(k=0; k<dimZ; k++) {
-// k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
-// k_m = k - 1; if (k_m < 0) k_m = k + 1;
-// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
-// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-//
-// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
-// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
-// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];
-//
-// denom_xx = fabs(dxx) + EPS;
-// denom_yy = fabs(dyy) + EPS;
-// denom_zz = fabs(dzz) + EPS;
-// denom_zz2 = fabs(dzz2) + EPS;
-//
-// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
-// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
-// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
-// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;
-// }}}
-// return 1;
-// }
-
-float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i1, j1, i2, j2, windowSize;
- float val1, val2, thresh_val, maxval;
- windowSize = 1;
- thresh_val = 0.0001; /*thresh_val = 0.0035;*/
-
- /* normalize volume first */
- maxval = 0.0f;
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
- }
- }
- }
-
- if (maxval != 0.0f) {
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval;
- }
- }
- }
- }
- else {
- printf("%s \n", "Maximum value is zero!");
- return 0;
- }
-
-#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
-
- Map[dimX*dimY*k + i*dimY + j] = 0;
- // Map2[dimX*dimY*k + i*dimY + j] = 0;
-
- val1 = 0.0f; val2 = 0.0f;
- for (i1 = -windowSize; i1 <= windowSize; i1++) {
- for (j1 = -windowSize; j1 <= windowSize; j1++) {
- i2 = i + i1;
- j2 = j + j1;
-
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (k == 0) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- else if (k == dimZ - 1) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- }
- // else if (k == 1) {
- // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
- // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- // }
- // else if (k == dimZ-2) {
- // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
- // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- // }
- else {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
- val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
- // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- }
- }
- }
-
- val1 = 0.111f*val1; val2 = 0.111f*val2;
- // val3 = 0.111f*val3; val4 = 0.111f*val4;
- if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
- // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;
- }
- }
- }
- return 1;
-}
-
-float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i1, j1, i2, j2, counter;
-#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
- for (i = 0; i<dimX; i++) {
- for (j = 0; j<dimY; j++) {
- for (k = 0; k<dimZ; k++) {
-
- counter = 0;
- for (i1 = -3; i1 <= 3; i1++) {
- for (j1 = -3; j1 <= 3; j1++) {
- i2 = i + i1;
- j2 = j + j1;
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
- }
- }
- }
- if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
- }
- }
- }
- return *Map;
-}
-
-
-/*********************3D *********************/ \ No newline at end of file
diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/main_func/regularizers_CPU/LLT_model_core.h
deleted file mode 100644
index 13fce5a..0000000
--- a/main_func/regularizers_CPU/LLT_model_core.h
+++ /dev/null
@@ -1,46 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-
-#define EPS 0.01
-
-/* 2D functions */
-#ifdef __cplusplus
-extern "C" {
-#endif
-float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
-float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
-
-float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
-float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
-
-float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
-float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
-
-//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/main_func/regularizers_CPU/PatchBased_Regul.c
deleted file mode 100644
index 9c925df..0000000
--- a/main_func/regularizers_CPU/PatchBased_Regul.c
+++ /dev/null
@@ -1,140 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "PatchBased_Regul_core.h"
-
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
- *
- * Matlab + C/mex compilers needed
- * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
- *
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
- SearchW_real = 3; /*default value*/
- SimilW = 1; /*default value*/
- h = 0.1;
- lambda = 0.1;
-
- if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
-
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
- if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
-
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/main_func/regularizers_CPU/PatchBased_Regul_core.c
deleted file mode 100644
index acfb464..0000000
--- a/main_func/regularizers_CPU/PatchBased_Regul_core.c
+++ /dev/null
@@ -1,213 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "PatchBased_Regul_core.h"
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
-
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-/*2D version function */
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
-{
- int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
- Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
- count = count + 1;
- }} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
-
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
-
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
-
- i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
- count = count + 1;
- }}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}
-
- value += A[i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
- }} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
- }
- }} /*main loop*/
- return (*B);
- free(Eucl_Vec);
-}
-
-/*3D version*/
- float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
- {
- int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
- count = count + 1;
- }}} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
- /* take all elements around the pixel of interest */
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- for(k_m=-SearchW; k_m<=SearchW; k_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
-
- i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- for(k_p=-SimilW; k_p<=SimilW; k_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
- count = count + 1;
- }}}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}}
- value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
-
- }}} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
- }
- }}} /*main loop*/
- free(Eucl_Vec);
- return *B;
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/main_func/regularizers_CPU/PatchBased_Regul_core.h
deleted file mode 100644
index d4a8a46..0000000
--- a/main_func/regularizers_CPU/PatchBased_Regul_core.h
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#define _USE_MATH_DEFINES
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
-* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
-*
-* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
-* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
-*
-* Input Parameters (mandatory):
-* 1. Image (2D or 3D)
-* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
-* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
-* 4. h - parameter for the PB penalty function
-* 5. lambda - regularization parameter
-
-* Output:
-* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
-*
-* Quick 2D denoising example in Matlab:
-Im = double(imread('lena_gray_256.tif'))/255; % loading image
-u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
-*
-* Please see more tests in a file:
-TestTemporalSmoothing.m
-
-*
-* Matlab + C/mex compilers needed
-* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
-*
-* D. Kazantsev *
-* 02/07/2014
-* Harwell, UK
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
-float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/main_func/regularizers_CPU/SplitBregman_TV.c b/main_func/regularizers_CPU/SplitBregman_TV.c
deleted file mode 100644
index 38f6a9d..0000000
--- a/main_func/regularizers_CPU/SplitBregman_TV.c
+++ /dev/null
@@ -1,179 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include <matrix.h>
-#include "SplitBregman_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Number of iterations [OPTIONAL parameter]
- * 4. eplsilon - tolerance constant [OPTIONAL parameter]
- * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
- * u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
- *
- * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
- * D. Kazantsev, 2016*
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
- const int *dim_array;
- float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 35; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if (nrhs == 5) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- lambda = 2.0f*mu;
- count = 1;
- re_old = 0.0f;
- /*Handling Matlab output data*/
- dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
-
- if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
-
- updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U_old[j] - U[j],2);
- re1 += pow(U_old[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break;
- }
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
-
- /*copyIm(U_old, U, dimX, dimY, dimZ); */
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
- if (number_of_dims == 3) {
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- copyIm(A, U, dimX, dimY, dimZ); /*initialize */
-
- /* begin outer SB iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*GS iteration */
- gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
-
- if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
- else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
-
- updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
-
- /* calculate norm to terminate earlier */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(U[j] - U_old[j],2);
- re1 += pow(U[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 4) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break; }
- /*printf("%f %i %i \n", re, ll, count); */
- re_old = re;
- }
- printf("SB iterations stopped at iteration: %i\n", ll);
- }
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/main_func/regularizers_CPU/SplitBregman_TV_core.c
deleted file mode 100644
index 4109a4b..0000000
--- a/main_func/regularizers_CPU/SplitBregman_TV_core.c
+++ /dev/null
@@ -1,259 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "SplitBregman_TV_core.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularization parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-*
-* References:
-* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
-* D. Kazantsev, 2016*
-*/
-
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
-{
- float sum, normConst;
- int i,j,i1,i2,j1,j2;
- normConst = 1.0f/(mu + 4.0f*lambda);
-
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
- sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
- sum *= lambda;
- sum += mu*A[(i)*dimY + (j)];
- U[(i)*dimY + (j)] = normConst*sum;
- }}
- return *U;
-}
-
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, val22, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
-
- if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
- if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
-
- }}
- return 1;
-}
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- denom = sqrt(val1*val1 + val2*val2);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[(i)*dimY + (j)] = val11*(val1/denom);
- Dy[(i)*dimY + (j)] = val11*(val2/denom);
- }
- else {
- Dx[(i)*dimY + (j)] = 0;
- Dy[(i)*dimY + (j)] = 0;
- }
- }}
- return 1;
-}
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
-{
- int i,j,i1,j1;
-#pragma omp parallel for shared(U) private(i,j,i1,j1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
- By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
- }}
- return 1;
-}
-
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
-{
- float normConst, d_val, b_val, sum;
- int i,j,i1,i2,j1,j2,k,k1,k2;
- normConst = 1.0f/(mu + 6.0f*lambda);
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
- b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
- sum = d_val + b_val;
- sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
- sum *= lambda;
- sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
- U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
- }}}
- return *U;
-}
-
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val22, val3, val33, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
- val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
-
- if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
- if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
- if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
-
- }}}
- return 1;
-}
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val3, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- denom = sqrt(val1*val1 + val2*val2 + val3*val3);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- Dz[index] = val11*(val3/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- Dz[index] = 0;
- }
- }}}
- return 1;
-}
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
-{
- int i,j,k,i1,j1,k1;
-#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
- By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
- Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
-
- }}}
- return 1;
-}
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/main_func/regularizers_CPU/SplitBregman_TV_core.h
deleted file mode 100644
index 6ed3ff9..0000000
--- a/main_func/regularizers_CPU/SplitBregman_TV_core.h
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-
-#include "utils.h"
-
-/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
-*
-* Input Parameters:
-* 1. Noisy image/volume
-* 2. lambda - regularization parameter
-* 3. Number of iterations [OPTIONAL parameter]
-* 4. eplsilon - tolerance constant [OPTIONAL parameter]
-* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-*
-* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References:
-* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
-* D. Kazantsev, 2016*
-*/
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
-
-float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
-
-#ifdef __cplusplus
-}
-#endif \ No newline at end of file
diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c
deleted file mode 100644
index c9cb440..0000000
--- a/main_func/regularizers_CPU/TGV_PD.c
+++ /dev/null
@@ -1,144 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_PD_core.h"
-#include "mex.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D)
- * 2. lambda - regularization parameter
- * 3. parameter to control first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of CP iterations
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc;
- *
- * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References:
- * K. Bredies "Total Generalized Variation"
- *
- * 28.11.16/Harwell
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll;
- const int *dim_array;
- float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
- lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
- alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/
- alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/
- iter = (int) mxGetScalar(prhs[4]); /*iterations number*/
- if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1];
-
- if (number_of_dims == 2) {
- /*2D case*/
- dimZ = 1;
- U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /*dual variables*/
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
-
- /*printf("%i \n", i);*/
- L2 = 12.0f; /*Lipshitz constant*/
- tau = 1.0/pow(L2,0.5);
- sigma = 1.0/pow(L2,0.5);
-
- /*Copy A to U*/
- copyIm(A, U, dimX, dimY, dimZ);
-
- /* Here primal-dual iterations begin for 2D */
- for(ll = 0; ll < iter; ll++) {
-
- /* Calculate Dual Variable P */
- DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for P*/
- ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
-
- /* Calculate Dual Variable Q */
- DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
-
- /*Projection onto convex set for Q*/
- ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
-
- /*saving U into U_old*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- /*adjoint operation -> divergence and projection of P*/
- DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
-
- /*get updated solution U*/
- newU(U, U_old, dimX, dimY, dimZ);
-
- /*saving V into V_old*/
- copyIm(V1, V1_old, dimX, dimY, dimZ);
- copyIm(V2, V2_old, dimX, dimY, dimZ);
-
- /* upd V*/
- UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
-
- /*get new V*/
- newU(V1, V1_old, dimX, dimY, dimZ);
- newU(V2, V2_old, dimX, dimY, dimZ);
- } /*end of iterations*/
- }
- else if (number_of_dims == 3) {
- mexErrMsgTxt("The input data should be a 2D array");
- /*3D case*/
- }
- else {mexErrMsgTxt("The input data should be a 2D array");}
-
-}
diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/main_func/regularizers_CPU/TGV_PD_core.c
deleted file mode 100644
index 4139d10..0000000
--- a/main_func/regularizers_CPU/TGV_PD_core.c
+++ /dev/null
@@ -1,208 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "TGV_PD_core.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
- * Total Generilized Variation (TGV)-L2 model (2D case only)
- *
- * Input Parameters:
- * 1. Noisy image/volume (2D)
- * 2. lambda - regularization parameter
- * 3. parameter to control first-order term (alpha1)
- * 4. parameter to control the second-order term (alpha0)
- * 5. Number of CP iterations
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
- *
- * References:
- * K. Bredies "Total Generalized Variation"
- *
- * 28.11.16/Harwell
- */
-
-
-
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
-#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- }}
- return 1;
-}
-/*Projection onto convex set for P*/
-float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha1;
- if (grad_magn > 1.0) {
- P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
- P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/*Calculating dual variable Q (using forward differences)*/
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
- float q1, q2, q11, q22;
-#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1)
- { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- else {
- q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- if (j == dimY-1) {
- q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
- }
- else {
- q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
- }
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22));
- }}
- return 1;
-}
-
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0) {
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/* Divergence and projection for P*/
-float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i,j;
- float P_v1, P_v2, div;
-#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (i == 0) P_v1 = (P1[i*dimY + (j)]);
- else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
- if (j == 0) P_v2 = (P2[i*dimY + (j)]);
- else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
- div = P_v1 + P_v2;
- U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
- }}
- return *U;
-}
-/*get updated solution U*/
-float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
-{
- int i;
-#pragma omp parallel for shared(U,U_old) private(i)
- for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
- return *U;
-}
-
-/*get update for V*/
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
-{
- int i,j;
- float q1, q11, q2, q22, div1, div2;
-#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == 0) {
- q1 = (Q1[i*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)]);
- }
- else {
- q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
- }
- if (j == 0) {
- q2 = (Q2[i*dimY + (j)]);
- q22 = (Q3[i*dimY + (j)]);
- }
- else {
- q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
- q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
- }
- div1 = q1 + q22;
- div2 = q2 + q11;
- V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
- V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
- }}
- return 1;
-}
-/*********************3D *********************/
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j,k;
-#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- }}}
- return 1;
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/main_func/regularizers_CPU/TGV_PD_core.h
deleted file mode 100644
index d5378df..0000000
--- a/main_func/regularizers_CPU/TGV_PD_core.h
+++ /dev/null
@@ -1,67 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-#include "utils.h"
-
-/* C-OMP implementation of Primal-Dual denoising method for
-* Total Generilized Variation (TGV)-L2 model (2D case only)
-*
-* Input Parameters:
-* 1. Noisy image/volume (2D)
-* 2. lambda - regularization parameter
-* 3. parameter to control first-order term (alpha1)
-* 4. parameter to control the second-order term (alpha0)
-* 5. Number of CP iterations
-*
-* Output:
-* Filtered/regularized image
-*
-* Example:
-* figure;
-* Im = double(imread('lena_gray_256.tif'))/255; % loading image
-* u0 = Im + .03*randn(size(Im)); % adding noise
-* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
-*
-* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-* References:
-* K. Bredies "Total Generalized Variation"
-*
-* 28.11.16/Harwell
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-/* 2D functions */
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
-float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
-float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
-float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
-//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/main_func/regularizers_CPU/utils.c b/main_func/regularizers_CPU/utils.c
deleted file mode 100644
index 0e83d2c..0000000
--- a/main_func/regularizers_CPU/utils.c
+++ /dev/null
@@ -1,29 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazanteev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "utils.h"
-
-/* Copy Image */
-float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, U) private(j)
- for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
- return *U;
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/utils.h b/main_func/regularizers_CPU/utils.h
deleted file mode 100644
index 53463a3..0000000
--- a/main_func/regularizers_CPU/utils.h
+++ /dev/null
@@ -1,32 +0,0 @@
-/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-//#include <matrix.h>
-//#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-//#include <stdio.h>
-#include "omp.h"
-#ifdef __cplusplus
-extern "C" {
-#endif
-float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-#ifdef __cplusplus
-}
-#endif
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
deleted file mode 100644
index 5a8c7c0..0000000
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
+++ /dev/null
@@ -1,114 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "Diff4th_GPU_kernel.h"
-
-/*
- * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
- *
- * Reference :
- * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
- *
- * Example
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
- * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
- * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
- *
- *
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int numdims, dimZ, size;
- float *A, *B, *A_L, *B_L;
- const int *dims;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
- float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
- int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
-
- if (numdims == 2) {
-
- int N, M, Z, i, j;
- Z = 0; // for the 2D case
- float tau = 0.01; // time step is sufficiently small for an explicit methods
-
- /*Input data*/
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
-
- /*Output data*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
- }}
-
- // Running CUDA code here
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
- }}
- }
- if (numdims == 3) {
- // 3D image denoising / regularization
- int N, M, Z, i, j, k;
- float tau = 0.0007; // Time Step is small for an explicit methods
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- Z = dims[2] + 2;
- int N_dims[] = {N, M, Z};
- A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
-
- /* output data */
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
- }}}}
-
- // Running CUDA kernel here for diffusivity
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
- }}}}
- }
-} \ No newline at end of file
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
deleted file mode 100644
index 178af00..0000000
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
+++ /dev/null
@@ -1,270 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "Diff4th_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-#define sizeT (sizeX*sizeY*sizeZ)
-#define epsilon 0.00000001
-
-/////////////////////////////////////////////////
-// 2D Image denosing - Second Step (The second derrivative)
-__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0;
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc));
-}
-
-// 2D Image denosing - The First Step
-__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2, V_norm, V_orth, c, c_sq;
-
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
- int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index;
- int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index;
- int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index;
- int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- xy_2 = 2.0f*gradX*gradY*gradXY;
- sq_sum = gradX_sq + gradY_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum; }
-
- c = 1.0f/(1.0f + sq_sum/sigma);
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/////////////////////////////////////////////////
-// 3D data parocerssing
-__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0, gradZZc = 0;
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- gradZZc = B[indexU] + B[indexD] - 2*B[index] ;
-
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc));
-}
-
-__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq;
-
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- B[index] = 0;
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex; if (A[indexNW] == 0) indexNW = index;
- int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex; if (A[indexNE] == 0) indexNE = index;
- int indexWS = (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index;
- int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex; if (A[indexES] == 0) indexES = index;
-
- int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index;
- int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index;
- int indexDW = (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index;
- int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index;
-
- int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1); if (A[indexUN] == 0) indexUN = index;
- int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1); if (A[indexUS] == 0) indexUS = index;
- int indexDN = (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index;
- int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1); if (A[indexDS] == 0) indexDS = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradZ = 0.5f*(A[indexU]-A[indexD]);
- gradZ_sq = gradZ*gradZ;
- gradZZ = A[indexU] + A[indexD] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]);
- gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]);
-
- xy_2 = 2.0f*gradX*gradY*gradXY;
- xyz_1 = 2.0f*gradX*gradZ*gradXZ;
- xyz_2 = 2.0f*gradY*gradZ*gradYZ;
-
- sq_sum = gradX_sq + gradY_sq + gradZ_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum; }
-
- c = 1;
- if ((1.0f + sq_sum/sigma) != 0.0f) {c = 1.0f/(1.0f + sq_sum/sigma);}
-
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/******************************************************/
-/********* HOST FUNCTION*************/
-extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
- int BLKXSIZE, BLKYSIZE,BLKZSIZE;
- float *Ad, *Bd, *Cd;
- sigma = sigma*sigma;
-
- if (Z == 0){
- // 4th order diffusion for 2D case
- BLKXSIZE = 8;
- BLKYSIZE = 16;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-
- if (Z != 0){
- // 4th order diffusion for 3D case
- BLKXSIZE = 8;
- BLKYSIZE = 8;
- BLKZSIZE = 8;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-} \ No newline at end of file
diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
deleted file mode 100644
index cfbb45a..0000000
--- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
+++ /dev/null
@@ -1,6 +0,0 @@
-#ifndef __DIFF_HO_H_
-#define __DIFF_HO_H_
-
-extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda);
-
-#endif
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp
deleted file mode 100644
index ff0cc90..0000000
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp
+++ /dev/null
@@ -1,171 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "NLM_GPU_kernel.h"
-
-/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters (mandatory):
- * 1. Image/volume (2D/3D)
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
- * 4. h - parameter for the PB penalty function
- * 5. lambda - regularization parameter
-
- * Output:
- * 1. regularized (denoised) Image/volume (N x N x N)
- *
- * In matlab check what kind of GPU you have with "gpuDevice" command,
- * then set your ComputeCapability, here I use -arch compute_35
- *
- * Quick 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
-
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
- *
- * D. Kazantsev
- * 2014-17
- * Harwell/Manchester UK
- */
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
- SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- lambda = (float) mxGetScalar(prhs[4]);
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }} /*main neighb loop */
-
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }}} /*main neighb loop */
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
deleted file mode 100644
index 17da3a8..0000000
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
+++ /dev/null
@@ -1,239 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "NLM_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-extern __shared__ float sharedmem[];
-
-// run PB den kernel here
-__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda, dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize)
-{
-
- int i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count;
- float value, Weight_norm, normsum, Weight;
-
- int bidx = blockIdx.x;
- int bidy = blockIdx.y%griddim.y;
- int bidz = (int)((blockIdx.y)/griddim.y);
-
- // global index for block endpoint
- int beidx = __mul24(bidx,blockDim.x);
- int beidy = __mul24(bidy,blockDim.y);
- int beidz = __mul24(bidz,blockDim.z);
-
- int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) +
- __mul24(threadIdx.y,blockDim.x) + threadIdx.x;
-
- #ifdef __DEVICE_EMULATION__
- printf("tid : %d", tid);
- #endif
-
- // update shared memory
- int nthreads = blockDim.x*blockDim.y*blockDim.z;
- int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z;
- for(int i=0; i<nUpdatePerThread; i++)
- {
- int sid = tid + i*nthreads; // index in shared memory
- if (sid < sharedMemSize)
- {
- // global x/y/z index in volume
- int gidx, gidy, gidz;
- int sidx, sidy, sidz, tid;
-
- sidz = sid / (sharedmemdim.x*sharedmemdim.y);
- tid = sid - sidz*(sharedmemdim.x*sharedmemdim.y);
- sidy = tid / (sharedmemdim.x);
- sidx = tid - sidy*(sharedmemdim.x);
-
- gidx = (int)sidx - (int)kerneldim.x + (int)beidx;
- gidy = (int)sidy - (int)kerneldim.y + (int)beidy;
- gidz = (int)sidz - (int)kerneldim.z + (int)beidz;
-
- // Neumann boundary condition
- int cx = (int) min(max(0,gidx),imagedim.x-1);
- int cy = (int) min(max(0,gidy),imagedim.y-1);
- int cz = (int) min(max(0,gidz),imagedim.z-1);
-
- int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx;
-
- sharedmem[sid] = Ad[gid];
- }
- }
- __syncthreads();
-
- // global index of the current voxel in the input volume
- int idx = beidx + threadIdx.x;
- int idy = beidy + threadIdx.y;
- int idz = beidz + threadIdx.z;
-
- if (Z == 1) {
- /* 2D case */
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY))
- {
- int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[j1*sharedmemdim.x+i1]*Weight;
- }}
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /*boundary conditions end*/
- }
- else {
- /*3D case*/
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY) &&
- idz >= padXY && idz < (imagedim.z - padXY) )
- {
- int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */
- int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight;
- }}} /* BIG search window loop end*/
-
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /* boundary conditions end */
- }
-}
-
-/////////////////////////////////////////////////
-// HOST FUNCTION
-extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
-// cudaDeviceReset();
-
- int padXY, SearchW_full, SimilW_full, blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth;
- float *Ad, *Bd, *Eucl_Vec_d;
-
- if (dimension == 2) {
- blockWidth = 16;
- blockHeight = 16;
- blockDepth = 1;
- Z = 1;
- kernel_depth = 0;
- }
- else {
- blockWidth = 8;
- blockHeight = 8;
- blockDepth = 8;
- kernel_depth = SearchW;
- }
-
- // compute how many blocks are needed
- nBlockX = ceil((float)N / (float)blockWidth);
- nBlockY = ceil((float)M / (float)blockHeight);
- nBlockZ = ceil((float)Z / (float)blockDepth);
-
- dim3 dimGrid(nBlockX,nBlockY*nBlockZ);
- dim3 dimBlock(blockWidth, blockHeight, blockDepth);
- dim3 imagedim(N,M,Z);
- dim3 griddim(nBlockX,nBlockY,nBlockZ);
-
- dim3 kerneldim(SearchW,SearchW,kernel_depth);
- dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth);
- int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z;
- int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth));
- float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1);
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) );
- /*allocate space for vectors on device*/
- if (dimension == 2) {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
- else {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
-
- /* copy data from the host to device */
- checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) );
-
- // Run CUDA kernel here
- NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize);
-
- checkCudaErrors( cudaPeekAtLastError() );
-// gpuErrchk( cudaDeviceSynchronize() );
-
- checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
- cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
-}
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
deleted file mode 100644
index bc9d4a3..0000000
--- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
+++ /dev/null
@@ -1,6 +0,0 @@
-#ifndef __NLMREG_KERNELS_H_
-#define __NLMREG_KERNELS_H_
-
-extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda);
-
-#endif
diff --git a/main_func/studentst.m b/main_func/studentst.m
deleted file mode 100644
index 93e0a0a..0000000
--- a/main_func/studentst.m
+++ /dev/null
@@ -1,47 +0,0 @@
-function [f,g,h,s,k] = studentst(r,k,s)
-% Students T penalty with 'auto-tuning'
-%
-% use:
-% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
-% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
-% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
-%
-% input:
-% r - residual as column vector
-% s - scale (optional)
-% k - degrees of freedom (optional)
-%
-% output:
-% f - misfit (scalar)
-% g - gradient (column vector)
-% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
-% s,k - scale and degrees of freedom
-%
-% Tristan van Leeuwen, 2012.
-% tleeuwen@eos.ubc.ca
-
-% fit both s and k
-if nargin == 1
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
- s = tmp(1);
- k = tmp(2);
-end
-
-
-if nargin == 2
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x,k),[1],opts);
- s = tmp(1);
-end
-
-% evaulate penalty
-[f,g,h] = st(r,s,k);
-
-
-function [f,g,h] = st(r,s,k)
-n = length(r);
-c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
-f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
-g = (k+1)*r./(s*k + conj(r).*r);
-h = (k+1)./(s*k + conj(r).*r);