diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-01-24 17:39:38 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-25 11:21:12 +0000 |
commit | 723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383 (patch) | |
tree | b4351067e39021973b7f155a04cd967289ac9ddc /main_func | |
parent | 9ff389298a1dc4d94222cfcc6e9c6c945401af03 (diff) | |
download | regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.gz regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.bz2 regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.tar.xz regularization-723a2d3fbe9a7a8c145b5f5ef481dcd4a3799383.zip |
all Matlab related stuff have been moved to wrappers
Diffstat (limited to 'main_func')
26 files changed, 0 insertions, 4063 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m deleted file mode 100644 index d717a03..0000000 --- a/main_func/FISTA_REC.m +++ /dev/null @@ -1,704 +0,0 @@ -function [X, output] = FISTA_REC(params) - -% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>> -% This code solves regularised PWLS problem using FISTA approach. -% The code contains multiple regularisation penalties as well as it can be -% accelerated by using ordered-subset version. Various projection -% geometries supported. - -% DISCLAIMER -% It is recommended to use ASTRA version 1.8 or later in order to avoid -% crashing due to GPU memory overflow for big datasets - -% ___Input___: -% params.[] file: -%----------------General Parameters------------------------ -% - .proj_geom (geometry of the projector) [required] -% - .vol_geom (geometry of the reconstructed object) [required] -% - .sino (2D or 3D sinogram) [required] -% - .iterFISTA (iterations for the main loop, default 40) -% - .L_const (Lipschitz constant, default Power method) ) -% - .X_ideal (ideal image, if given) -% - .weights (statisitcal weights for the PWLS model, size of the sinogram) -% - .fidelity (use 'studentt' fidelity) -% - .ROI (Region-of-interest, only if X_ideal is given) -% - .initialize (a 'warm start' using SIRT method from ASTRA) -%----------------Regularization choices------------------------ -% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter) -% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) -% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter) -% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term) -% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter) -% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) -% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) -% 4.3 .Regul_PB_h (PB penalty function threshold) -% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter) -% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) -% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) -% 5.3 .Regul_PB_h (PB penalty function threshold) -% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter) -% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter) -% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter) -% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) -% - .Regul_Iterations (iterations for the selected penalty, default 25) -% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default) -%----------------Ring removal------------------------ -% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) -% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) -%----------------Visualization parameters------------------------ -% - .show (visualize reconstruction 1/0, (0 default)) -% - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) -% - .slice (for 3D volumes - slice number to imshow) -% ___Output___: -% 1. X - reconstructed image/volume -% 2. output - a structure with -% - .Resid_error - residual error (if X_ideal is given) -% - .objective: value of the objective function -% - .L_const: Lipshitz constant to avoid recalculations - -% References: -% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse -% Problems" by A. Beck and M Teboulle -% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo -% 3. "A novel tomographic reconstruction method based on the robust -% Student's t function for suppressing data outliers" D. Kazantsev et.al. -% D. Kazantsev, 2016-17 - -% Dealing with input parameters -if (isfield(params,'proj_geom') == 0) - error('%s \n', 'Please provide ASTRA projection geometry - proj_geom'); -else - proj_geom = params.proj_geom; -end -if (isfield(params,'vol_geom') == 0) - error('%s \n', 'Please provide ASTRA object geometry - vol_geom'); -else - vol_geom = params.vol_geom; -end -N = params.vol_geom.GridColCount; -if (isfield(params,'sino')) - sino = params.sino; - [Detectors, anglesNumb, SlicesZ] = size(sino); - fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.'); -else - error('%s \n', 'Please provide a sinogram'); -end -if (isfield(params,'iterFISTA')) - iterFISTA = params.iterFISTA; -else - iterFISTA = 40; -end -if (isfield(params,'weights')) - weights = params.weights; -else - weights = ones(size(sino)); -end -if (isfield(params,'fidelity')) - studentt = 0; - if (strcmp(params.fidelity,'studentt') == 1) - studentt = 1; - end -else - studentt = 0; -end -if (isfield(params,'L_const')) - L_const = params.L_const; -else - % using Power method (PM) to establish L constant - fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...'); - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) - % for 2D geometry we can do just one selected slice - niter = 15; % number of iteration for the PM - x1 = rand(N,N,1); - sqweight = sqrt(weights(:,:,1)); - [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); - y = sqweight.*y'; - astra_mex_data2d('delete', sino_id); - for i = 1:niter - [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom); - s = norm(x1(:)); - x1 = x1./s; - [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); - y = sqweight.*y'; - astra_mex_data2d('delete', sino_id); - end - elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec')) - % 3D geometry - niter = 8; % number of iteration for PM - x1 = rand(N,N,SlicesZ); - sqweight = sqrt(weights); - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - - for i = 1:niter - [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); - s = norm(x1(:)); - x1 = x1/s; - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); - end - clear x1 - else - error('%s \n', 'No suitable geometry has been found!'); - end - L_const = s; -end -if (isfield(params,'X_ideal')) - X_ideal = params.X_ideal; -else - X_ideal = 'none'; -end -if (isfield(params,'ROI')) - ROI = params.ROI; -else - ROI = find(X_ideal>=0.0); -end -if (isfield(params,'Regul_Lambda_FGPTV')) - lambdaFGP_TV = params.Regul_Lambda_FGPTV; -else - lambdaFGP_TV = 0; -end -if (isfield(params,'Regul_Lambda_SBTV')) - lambdaSB_TV = params.Regul_Lambda_SBTV; -else - lambdaSB_TV = 0; -end -if (isfield(params,'Regul_tol')) - tol = params.Regul_tol; -else - tol = 1.0e-05; -end -if (isfield(params,'Regul_Iterations')) - IterationsRegul = params.Regul_Iterations; -else - IterationsRegul = 45; -end -if (isfield(params,'Regul_LambdaLLT')) - lambdaHO = params.Regul_LambdaLLT; -else - lambdaHO = 0; -end -if (isfield(params,'Regul_iterHO')) - iterHO = params.Regul_iterHO; -else - iterHO = 50; -end -if (isfield(params,'Regul_tauLLT')) - tauHO = params.Regul_tauLLT; -else - tauHO = 0.0001; -end -if (isfield(params,'Regul_LambdaPatchBased_CPU')) - lambdaPB = params.Regul_LambdaPatchBased_CPU; -else - lambdaPB = 0; -end -if (isfield(params,'Regul_LambdaPatchBased_GPU')) - lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU; -else - lambdaPB_GPU = 0; -end -if (isfield(params,'Regul_PB_SearchW')) - SearchW = params.Regul_PB_SearchW; -else - SearchW = 3; % default -end -if (isfield(params,'Regul_PB_SimilW')) - SimilW = params.Regul_PB_SimilW; -else - SimilW = 1; % default -end -if (isfield(params,'Regul_PB_h')) - h_PB = params.Regul_PB_h; -else - h_PB = 0.1; % default -end -if (isfield(params,'Regul_LambdaDiffHO')) - LambdaDiff_HO = params.Regul_LambdaDiffHO; -else - LambdaDiff_HO = 0; -end -if (isfield(params,'Regul_DiffHO_EdgePar')) - LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar; -else - LambdaDiff_HO_EdgePar = 0.01; -end -if (isfield(params,'Regul_LambdaTGV')) - LambdaTGV = params.Regul_LambdaTGV; -else - LambdaTGV = 0; -end -if (isfield(params,'Ring_LambdaR_L1')) - lambdaR_L1 = params.Ring_LambdaR_L1; -else - lambdaR_L1 = 0; -end -if (isfield(params,'Ring_Alpha')) - alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure -else - alpha_ring = 1; -end -if (isfield(params,'Regul_Dimension')) - Dimension = params.Regul_Dimension; - if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1)) - Dimension = '3D'; - end -else - Dimension = '3D'; -end -if (isfield(params,'show')) - show = params.show; -else - show = 0; -end -if (isfield(params,'maxvalplot')) - maxvalplot = params.maxvalplot; -else - maxvalplot = 1; -end -if (isfield(params,'slice')) - slice = params.slice; -else - slice = 1; -end -if (isfield(params,'initialize')) - X = params.initialize; - if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ)) - error('%s \n', 'The initialized volume has different dimensions!'); - end -else - X = zeros(N,N,SlicesZ, 'single'); % storage for the solution -end -if (isfield(params,'subsets')) - % Ordered Subsets reorganisation of data and angles - subsets = params.subsets; % subsets number - angles = proj_geom.ProjectionAngles; - binEdges = linspace(min(angles),max(angles),subsets+1); - - % assign values to bins - [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]); - - % get rearranged subset indices - IndicesReorg = zeros(length(angles),1); - counterM = 0; - for ii = 1:max(binsDiscr(:)) - counter = 0; - for jj = 1:subsets - curr_index = ii+jj-1 + counter; - if (binsDiscr(jj) >= ii) - counterM = counterM + 1; - IndicesReorg(counterM) = curr_index; - end - counter = (counter + binsDiscr(jj)) - 1; - end - end -else - subsets = 0; % Classical FISTA -end - -%----------------Reconstruction part------------------------ -Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given) -objective = zeros(iterFISTA,1); % objective function values vector - - -if (subsets == 0) - % Classical FISTA - t = 1; - X_t = X; - - r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors - r_x = r; % another ring variable - residual = zeros(size(sino),'single'); - - % Outer FISTA iterations loop - for i = 1:iterFISTA - - X_old = X; - t_old = t; - r_old = r; - - - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) - % if geometry is 2D use slice-by-slice projection-backprojection routine - sino_updt = zeros(size(sino),'single'); - for kkk = 1:SlicesZ - [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom); - sino_updt(:,:,kkk) = sinoT'; - astra_mex_data2d('delete', sino_id); - end - else - % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - astra_mex_data3d('delete', sino_id); - end - - if (lambdaR_L1 > 0) - % the ring removal part (Group-Huber fidelity) - for kkk = 1:anglesNumb - residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); - end - vec = sum(residual,2); - if (SlicesZ > 1) - vec = squeeze(vec(:,1,:)); - end - r = r_x - (1./L_const).*vec; - objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - elseif (studentt > 0) - % artifacts removal with Students t penalty - residual = weights.*(sino_updt - sino); - for kkk = 1:SlicesZ - res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram - %s = 100; - %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); - [ff, gr] = studentst(res_vec, 1); - residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb); - end - objective(i) = ff; % for the objective function output - else - % no ring removal (LS model) - residual = weights.*(sino_updt - sino); - objective(i) = 0.5*norm(residual(:)); % for the objective function output - end - - % if the geometry is 2D use slice-by-slice projection-backprojection routine - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) - x_temp = zeros(size(X),'single'); - for kkk = 1:SlicesZ - [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom); - end - else - [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); - astra_mex_data3d('delete', id); - end - X = X_t - (1/L_const).*x_temp; - - % ----------------Regularization part------------------------% - if (lambdaFGP_TV > 0) - % FGP-TV regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); - end - else - % 3D regularization - [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); - end - objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ); - end - if (lambdaSB_TV > 0) - % Split Bregman regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) - end - else - % 3D regularization - X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) - end - end - if (lambdaHO > 0) - % Higher Order (LLT) regularization - X2 = zeros(N,N,SlicesZ,'single'); - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); - end - else - % 3D regularization - X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); - end - X = 0.5.*(X + X2); % averaged combination of two solutions - - end - if (lambdaPB > 0) - % Patch-Based regularization (can be very slow on CPU) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const); - end - else - X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const); - end - end - if (lambdaPB_GPU > 0) - % Patch-Based regularization (GPU CUDA implementation) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); - end - else - X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); - end - end - if (LambdaDiff_HO > 0) - % Higher-order diffusion penalty (GPU CUDA implementation) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); - end - else - X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); - end - end - if (LambdaTGV > 0) - % Total Generalized variation (currently only 2D) - lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper - lamTGV2 = 0.8; % second-order term - for kkk = 1:SlicesZ - X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul); - end - end - - if (lambdaR_L1 > 0) - r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector - end - - t = (1 + sqrt(1 + 4*t^2))/2; % updating t - X_t = X + ((t_old-1)/t).*(X - X_old); % updating X - - if (lambdaR_L1 > 0) - r_x = r + ((t_old-1)/t).*(r - r_old); % updating r - end - - if (show == 1) - figure(10); imshow(X(:,:,slice), [0 maxvalplot]); - if (lambdaR_L1 > 0) - figure(11); plot(r); title('Rings offset vector') - end - pause(0.01); - end - if (strcmp(X_ideal, 'none' ) == 0) - Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); - fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); - else - fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); - end - end -else - % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version) - t = 1; - X_t = X; - proj_geomSUB = proj_geom; - - r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors - r_x = r; % another ring variable - residual2 = zeros(size(sino),'single'); - sino_updt_FULL = zeros(size(sino),'single'); - - - % Outer FISTA iterations loop - for i = 1:iterFISTA - - if ((i > 1) && (lambdaR_L1 > 0)) - % in order to make Group-Huber fidelity work with ordered subsets - % we still need to work with full sinogram - - % the offset variable must be calculated for the whole - % updated sinogram - sino_updt_FULL - for kkk = 1:anglesNumb - residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); - end - - r_old = r; - vec = sum(residual2,2); - if (SlicesZ > 1) - vec = squeeze(vec(:,1,:)); - end - r = r_x - (1./L_const).*vec; % update ring variable - end - - % subsets loop - counterInd = 1; - for ss = 1:subsets - X_old = X; - t_old = t; - - numProjSub = binsDiscr(ss); % the number of projections per subset - sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single'); - CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset - proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces); - - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) - % if geometry is 2D use slice-by-slice projection-backprojection routine - for kkk = 1:SlicesZ - [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom); - sino_updt_Sub(:,:,kkk) = sinoT'; - astra_mex_data2d('delete', sino_id); - end - else - % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) - [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); - astra_mex_data3d('delete', sino_id); - end - - if (lambdaR_L1 > 0) - % Group-Huber fidelity (ring removal) - residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset - for kkk = 1:numProjSub - indC = CurrSubIndeces(kkk); - residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); - sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram - end - - elseif (studentt > 0) - % student t data fidelity - - % artifacts removal with Students t penalty - residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); - - for kkk = 1:SlicesZ - res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram - %s = 100; - %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); - [ff, gr] = studentst(res_vec, 1); - residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub); - end - objective(i) = ff; % for the objective function output - else - % PWLS model - residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); - objective(i) = 0.5*norm(residualSub(:)); % for the objective function output - end - - % perform backprojection of a subset - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) - % if geometry is 2D use slice-by-slice projection-backprojection routine - x_temp = zeros(size(X),'single'); - for kkk = 1:SlicesZ - [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom); - end - else - [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom); - astra_mex_data3d('delete', id); - end - - X = X_t - (1/L_const).*x_temp; - - % ----------------Regularization part------------------------% - if (lambdaFGP_TV > 0) - % FGP-TV regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); - end - else - % 3D regularization - [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); - end - objective(i) = objective(i) + f_val; - end - if (lambdaSB_TV > 0) - % Split Bregman regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) - end - else - % 3D regularization - X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) - end - end - if (lambdaHO > 0) - % Higher Order (LLT) regularization - X2 = zeros(N,N,SlicesZ,'single'); - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); - end - else - % 3D regularization - X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); - end - X = 0.5.*(X + X2); % the averaged combination of two solutions - end - if (lambdaPB > 0) - % Patch-Based regularization (can be slow on CPU) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); - end - else - X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); - end - end - if (lambdaPB_GPU > 0) - % Patch-Based regularization (GPU CUDA implementation) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); - end - else - X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); - end - end - if (LambdaDiff_HO > 0) - % Higher-order diffusion penalty (GPU CUDA implementation) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); - end - else - X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); - end - end - if (LambdaTGV > 0) - % Total Generalized variation (currently only 2D) - lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper - lamTGV2 = 0.5; % second-order term - for kkk = 1:SlicesZ - X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul); - end - end - - t = (1 + sqrt(1 + 4*t^2))/2; % updating t - X_t = X + ((t_old-1)/t).*(X - X_old); % updating X - counterInd = counterInd + numProjSub; - end - - if (i == 1) - r_old = r; - end - - % working with a 'ring vector' - if (lambdaR_L1 > 0) - r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector - r_x = r + ((t_old-1)/t).*(r - r_old); % updating r - end - - if (show == 1) - figure(10); imshow(X(:,:,slice), [0 maxvalplot]); - if (lambdaR_L1 > 0) - figure(11); plot(r); title('Rings offset vector') - end - pause(0.01); - end - - if (strcmp(X_ideal, 'none' ) == 0) - Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); - fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); - else - fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); - end - end -end - -output.Resid_error = Resid_error; -output.objective = objective; -output.L_const = L_const; - -end diff --git a/main_func/compile_mex.m b/main_func/compile_mex.m deleted file mode 100644 index 1353859..0000000 --- a/main_func/compile_mex.m +++ /dev/null @@ -1,11 +0,0 @@ -% compile mex's in Matlab once -cd regularizers_CPU/ - -mex LLT_model.c LLT_model_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex SplitBregman_TV.c SplitBregman_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex TGV_PD.c TGV_PD_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex PatchBased_Regul.c PatchBased_Regul_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" - -cd ../../ -cd demos diff --git a/main_func/regularizers_CPU/FGP_TV.c b/main_func/regularizers_CPU/FGP_TV.c deleted file mode 100644 index 30cea1a..0000000 --- a/main_func/regularizers_CPU/FGP_TV.c +++ /dev/null @@ -1,216 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ -#include "matrix.h" -#include "mex.h" -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon: tolerance constant [OPTIONAL parameter] - * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] - * - * Output: - * [1] Filtered/regularized image - * [2] last function value - * - * Example of image denoising: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .05*randn(size(Im)); % adding noise - * u = FGP_TV(single(u0), 0.05, 100, 1e-04); - * - * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * - * D. Kazantsev, 2016-17 - * - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV; - const int *dim_array; - float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - - A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 50; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if (nrhs == 5) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - /*output function value (last iteration) */ - plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - float *funcvalA = (float *) mxGetData(plhs[1]); - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - tk = 1.0f; - tkp1=1.0f; - count = 0; - re_old = 0.0f; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* begin iterations */ - for(ll=0; ll<iter; ll++) { - - /* computing the gradient of the objective function */ - Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); - - /*Taking a step towards minus of the gradient*/ - Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); - - /* projection step */ - Proj_func2D(P1, P2, methTV, dimX, dimY); - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); - - /* calculate norm */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j],2); - re1 += pow(D[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) { - Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - break; } - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - break; }} - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - tk = tkp1; - - /* calculating the objective function value */ - if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - } - printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - } - if (number_of_dims == 3) { - D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* begin iterations */ - for(ll=0; ll<iter; ll++) { - - /* computing the gradient of the objective function */ - Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ); - - /*Taking a step towards minus of the gradient*/ - Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - - /* projection step */ - Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); - - /* calculate norm - stopping rules*/ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j],2); - re1 += pow(D[j],2); - } - re = sqrt(re)/sqrt(re1); - /* stop if the norm residual is less than the tolerance EPS */ - if (re < epsil) count++; - if (count > 3) { - Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - break;} - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - }} - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - copyIm(P3, P3_old, dimX, dimY, dimZ); - tk = tkp1; - - if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - } - printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - } -} diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/main_func/regularizers_CPU/FGP_TV_core.c deleted file mode 100644 index 03cd445..0000000 --- a/main_func/regularizers_CPU/FGP_TV_core.c +++ /dev/null @@ -1,266 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume [REQUIRED] - * 2. lambda - regularization parameter [REQUIRED] - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon: tolerance constant [OPTIONAL parameter] - * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] - * - * Output: - * [1] Filtered/regularized image - * [2] last function value - * - * Example of image denoising: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .05*randn(size(Im)); % adding noise - * u = FGP_TV(single(u0), 0.05, 100, 1e-04); - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - * - * D. Kazantsev, 2016-17 - * - */ - -/* 2D-case related Functions */ -/*****************************************************************/ -float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY) -{ - int i,j; - float f1, f2, val1, val2; - - /*data-related term */ - f1 = 0.0f; - for(i=0; i<dimX*dimY; i++) f1 += pow(D[i] - A[i],2); - - /*TV-related term */ - f2 = 0.0f; - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* boundary conditions */ - if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(i+1)*dimY + (j)] - A[(i)*dimY + (j)];} - if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(i)*dimY + (j+1)] - A[(i)*dimY + (j)];} - f2 += sqrt(pow(val1,2) + pow(val2,2)); - }} - - /* sum of two terms */ - funcvalA[0] = 0.5f*f1 + lambda*f2; - return *funcvalA; -} - -float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) -{ - float val1, val2; - int i, j; -#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - /* boundary conditions */ - if (i == 0) { val1 = 0.0f; } - else { val1 = R1[(i - 1)*dimY + (j)]; } - if (j == 0) { val2 = 0.0f; } - else { val2 = R2[(i)*dimY + (j - 1)]; } - D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2); - } - } - return *D; -} -float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) -{ - float val1, val2, multip; - int i, j; - multip = (1.0f / (8.0f*lambda)); -#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - /* boundary conditions */ - if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)]; - if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)]; - P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1; - P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2; - } - } - return 1; -} -float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY) -{ - float val1, val2, denom; - int i, j; - if (methTV == 0) { - /* isotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,j,denom) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2); - if (denom > 1) { - P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom); - P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom); - } - } - } - } - else { - /* anisotropic TV*/ -#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - val1 = fabs(P1[(i)*dimY + (j)]); - val2 = fabs(P2[(i)*dimY + (j)]); - if (val1 < 1.0f) { val1 = 1.0f; } - if (val2 < 1.0f) { val2 = 1.0f; } - P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1; - P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2; - } - } - } - return 1; -} -float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY) -{ - int i, j; - float multip; - multip = ((tk - 1.0f) / tkp1); -#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]); - R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]); - } - } - return 1; -} - -/* 3D-case related Functions */ -/*****************************************************************/ -float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ) -{ - int i,j,k; - float f1, f2, val1, val2, val3; - - /*data-related term */ - f1 = 0.0f; - for(i=0; i<dimX*dimY*dimZ; i++) f1 += pow(D[i] - A[i],2); - - /*TV-related term */ - f2 = 0.0f; - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* boundary conditions */ - if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(dimX*dimY)*k + (i+1)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} - if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(dimX*dimY)*k + (i)*dimY + (j+1)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} - if (k == dimZ-1) {val3 = 0.0f;} else {val3 = A[(dimX*dimY)*(k+1) + (i)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} - f2 += sqrt(pow(val1,2) + pow(val2,2) + pow(val3,2)); - }}} - /* sum of two terms */ - funcvalA[0] = 0.5f*f1 + lambda*f2; - return *funcvalA; -} - -float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3; - int i, j, k; -#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - /* boundary conditions */ - if (i == 0) { val1 = 0.0f; } - else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; } - if (j == 0) { val2 = 0.0f; } - else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; } - if (k == 0) { val3 = 0.0f; } - else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; } - D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3); - } - } - } - return *D; -} -float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3, multip; - int i, j, k; - multip = (1.0f / (8.0f*lambda)); -#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - /* boundary conditions */ - if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)]; - if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)]; - if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)]; - P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1; - P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2; - P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3; - } - } - } - return 1; -} -float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ) -{ - float val1, val2, val3; - int i, j, k; -#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]); - val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]); - val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]); - if (val1 < 1.0f) { val1 = 1.0f; } - if (val2 < 1.0f) { val2 = 1.0f; } - if (val3 < 1.0f) { val3 = 1.0f; } - - P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1; - P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2; - P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3; - } - } - } - return 1; -} -float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ) -{ - int i, j, k; - float multip; - multip = ((tk - 1.0f) / tkp1); -#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]); - R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]); - R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]); - } - } - } - return 1; -} - - diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/main_func/regularizers_CPU/FGP_TV_core.h deleted file mode 100644 index 6430bf2..0000000 --- a/main_func/regularizers_CPU/FGP_TV_core.h +++ /dev/null @@ -1,71 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -//#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" -#include "utils.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) -* -* Input Parameters: -* 1. Noisy image/volume [REQUIRED] -* 2. lambda - regularization parameter [REQUIRED] -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon: tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* -* Output: -* [1] Filtered/regularized image -* [2] last function value -* -* Example of image denoising: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .05*randn(size(Im)); % adding noise -* u = FGP_TV(single(u0), 0.05, 100, 1e-04); -* -* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* This function is based on the Matlab's code and paper by -* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" -* -* D. Kazantsev, 2016-17 -* -*/ -#ifdef __cplusplus -extern "C" { -#endif -//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); -float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); -float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); -float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY); -float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY); -float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY); - -float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); -float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); -float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ); -float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ); -float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ); -#ifdef __cplusplus -} -#endif
\ No newline at end of file diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c deleted file mode 100644 index 0b07b47..0000000 --- a/main_func/regularizers_CPU/LLT_model.c +++ /dev/null @@ -1,169 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include "matrix.h" -#include "LLT_model_core.h" - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty -* -* Input Parameters: -* 1. U0 - original noise image/volume -* 2. lambda - regularization parameter -* 3. tau - time-step for explicit scheme -* 4. iter - iterations number -* 5. epsil - tolerance constant (to terminate earlier) -* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .03*randn(size(Im)); % adding noise -* [Den] = LLT_model(single(u0), 10, 0.1, 1); -* -* -* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE -* -* 28.11.16/Harwell -*/ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher; - const int *dim_array; - float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old; - unsigned short *Map=NULL; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/ - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } - lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/ - tau = (float) mxGetScalar(prhs[2]); /* time-step */ - iter = (int) mxGetScalar(prhs[3]); /*iterations number*/ - epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ - switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; - - if (number_of_dims == 2) { - /*2D case*/ - U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - else if (number_of_dims == 3) { - /*3D case*/ - dimZ = dim_array[2]; - U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - if (switcher != 0) { - Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); - } - } - else {mexErrMsgTxt("The input data should be 2D or 3D");} - - /*Copy U0 to U*/ - copyIm(U0, U, dimX, dimY, dimZ); - - count = 1; - re_old = 0.0f; - if (number_of_dims == 2) { - for(ll = 0; ll < iter; ll++) { - - copyIm(U, U_old, dimX, dimY, dimZ); - - /*estimate inner derrivatives */ - der2D(U, D1, D2, dimX, dimY, dimZ); - /* calculate div^2 and update */ - div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j],2); - re1 += pow(U_old[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - - } /*end of iterations*/ - printf("HO iterations stopped at iteration: %i\n", ll); - } - /*3D version*/ - if (number_of_dims == 3) { - - if (switcher == 1) { - /* apply restrictive smoothing */ - calcMap(U, Map, dimX, dimY, dimZ); - /*clear outliers */ - cleanMap(Map, dimX, dimY, dimZ); - } - for(ll = 0; ll < iter; ll++) { - - copyIm(U, U_old, dimX, dimY, dimZ); - - /*estimate inner derrivatives */ - der3D(U, D1, D2, D3, dimX, dimY, dimZ); - /* calculate div^2 and update */ - div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j],2); - re1 += pow(U_old[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - - } /*end of iterations*/ - printf("HO iterations stopped at iteration: %i\n", ll); - } -} diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/main_func/regularizers_CPU/LLT_model_core.c deleted file mode 100644 index 3a853d2..0000000 --- a/main_func/regularizers_CPU/LLT_model_core.c +++ /dev/null @@ -1,318 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "LLT_model_core.h" - -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty -* -* Input Parameters: -* 1. U0 - origanal noise image/volume -* 2. lambda - regularization parameter -* 3. tau - time-step for explicit scheme -* 4. iter - iterations number -* 5. epsil - tolerance constant (to terminate earlier) -* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .03*randn(size(Im)); % adding noise -* [Den] = LLT_model(single(u0), 10, 0.1, 1); -* -* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE -* -* 28.11.16/Harwell -*/ - - -float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ) -{ - int i, j, i_p, i_m, j_m, j_p; - float dxx, dyy, denom_xx, denom_yy; -#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j]; - dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m]; - - denom_xx = fabs(dxx) + EPS; - denom_yy = fabs(dyy) + EPS; - - D1[i*dimY + j] = dxx / denom_xx; - D2[i*dimY + j] = dyy / denom_yy; - } - } - return 1; -} -float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i, j, i_p, i_m, j_m, j_p; - float div, dxx, dyy; -#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - - dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j]; - dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m]; - - div = dxx + dyy; - - U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]); - } - } - return *U0; -} - -float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ) -{ - int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; - float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz; -#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz) - for (i = 0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - for (j = 0; j<dimY; j++) { - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - for (k = 0; k<dimZ; k++) { - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; - - dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; - dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; - dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; - - denom_xx = fabs(dxx) + EPS; - denom_yy = fabs(dyy) + EPS; - denom_zz = fabs(dzz) + EPS; - - D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx; - D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy; - D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz; - - } - } - } - return 1; -} - -float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; - float div, dxx, dyy, dzz; -#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz) - for (i = 0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i_p = i + 1; if (i_p == dimX) i_p = i - 1; - i_m = i - 1; if (i_m < 0) i_m = i + 1; - for (j = 0; j<dimY; j++) { - j_p = j + 1; if (j_p == dimY) j_p = j - 1; - j_m = j - 1; if (j_m < 0) j_m = j + 1; - for (k = 0; k<dimZ; k++) { - k_p = k + 1; if (k_p == dimZ) k_p = k - 1; - k_m = k - 1; if (k_m < 0) k_m = k + 1; - // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; - // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; - - dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j]; - dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m]; - dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; - - if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0; - div = dxx + dyy + dzz; - - // if (switcher == 1) { - // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0; - //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; - // div = dzz + dzz2; - // } - - // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; - // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; - // div = dzz + dzz2; - - U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]); - } - } - } - return *U0; -} - -// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ) -// { -// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1; -// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2; -// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1) -// for(i=0; i<dimX; i++) { -// /* symmetric boundary conditions (Neuman) */ -// i_p = i + 1; if (i_p == dimX) i_p = i - 1; -// i_m = i - 1; if (i_m < 0) i_m = i + 1; -// for(j=0; j<dimY; j++) { -// j_p = j + 1; if (j_p == dimY) j_p = j - 1; -// j_m = j - 1; if (j_m < 0) j_m = j + 1; -// for(k=0; k<dimZ; k++) { -// k_p = k + 1; if (k_p == dimZ) k_p = k - 1; -// k_m = k - 1; if (k_m < 0) k_m = k + 1; -// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; -// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; -// -// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; -// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; -// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; -// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j]; -// -// denom_xx = fabs(dxx) + EPS; -// denom_yy = fabs(dyy) + EPS; -// denom_zz = fabs(dzz) + EPS; -// denom_zz2 = fabs(dzz2) + EPS; -// -// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx; -// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy; -// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz; -// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2; -// }}} -// return 1; -// } - -float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ) -{ - int i, j, k, i1, j1, i2, j2, windowSize; - float val1, val2, thresh_val, maxval; - windowSize = 1; - thresh_val = 0.0001; /*thresh_val = 0.0035;*/ - - /* normalize volume first */ - maxval = 0.0f; - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j]; - } - } - } - - if (maxval != 0.0f) { - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval; - } - } - } - } - else { - printf("%s \n", "Maximum value is zero!"); - return 0; - } - -#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - - Map[dimX*dimY*k + i*dimY + j] = 0; - // Map2[dimX*dimY*k + i*dimY + j] = 0; - - val1 = 0.0f; val2 = 0.0f; - for (i1 = -windowSize; i1 <= windowSize; i1++) { - for (j1 = -windowSize; j1 <= windowSize; j1++) { - i2 = i + i1; - j2 = j + j1; - - if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { - if (k == 0) { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); - // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); - } - else if (k == dimZ - 1) { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); - // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); - } - // else if (k == 1) { - // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); - // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); - // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); - // } - // else if (k == dimZ-2) { - // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); - // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); - // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); - // } - else { - val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); - val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); - // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); - // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); - } - } - } - } - - val1 = 0.111f*val1; val2 = 0.111f*val2; - // val3 = 0.111f*val3; val4 = 0.111f*val4; - if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1; - // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1; - } - } - } - return 1; -} - -float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ) -{ - int i, j, k, i1, j1, i2, j2, counter; -#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter) - for (i = 0; i<dimX; i++) { - for (j = 0; j<dimY; j++) { - for (k = 0; k<dimZ; k++) { - - counter = 0; - for (i1 = -3; i1 <= 3; i1++) { - for (j1 = -3; j1 <= 3; j1++) { - i2 = i + i1; - j2 = j + j1; - if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { - if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++; - } - } - } - if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1; - } - } - } - return *Map; -} - - -/*********************3D *********************/
\ No newline at end of file diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/main_func/regularizers_CPU/LLT_model_core.h deleted file mode 100644 index 13fce5a..0000000 --- a/main_func/regularizers_CPU/LLT_model_core.h +++ /dev/null @@ -1,46 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -//#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" -#include "utils.h" - -#define EPS 0.01 - -/* 2D functions */ -#ifdef __cplusplus -extern "C" { -#endif -float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ); -float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau); - -float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ); -float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau); - -float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ); -float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ); - -//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); -#ifdef __cplusplus -} -#endif
\ No newline at end of file diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/main_func/regularizers_CPU/PatchBased_Regul.c deleted file mode 100644 index 9c925df..0000000 --- a/main_func/regularizers_CPU/PatchBased_Regul.c +++ /dev/null @@ -1,140 +0,0 @@ -/*
-This work is part of the Core Imaging Library developed by
-Visual Analytics and Imaging System Group of the Science Technology
-Facilities Council, STFC
-
-Copyright 2017 Daniil Kazantsev
-Copyright 2017 Srikanth Nagella, Edoardo Pasca
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-*/
-
-#include "mex.h"
-#include "matrix.h"
-#include "PatchBased_Regul_core.h"
-
-
-/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters:
- * 1. Image (2D or 3D) [required]
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
- * 4. h - parameter for the PB penalty function [optional]
- * 5. lambda - regularization parameter [optional]
-
- * Output:
- * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
- *
- * 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
- *
- * Matlab + C/mex compilers needed
- * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
- *
- * D. Kazantsev *
- * 02/07/2014
- * Harwell, UK
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
- SearchW_real = 3; /*default value*/
- SimilW = 1; /*default value*/
- h = 0.1;
- lambda = 0.1;
-
- if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
-
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
- if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- /**************************************************************************/
-
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/main_func/regularizers_CPU/PatchBased_Regul_core.c deleted file mode 100644 index acfb464..0000000 --- a/main_func/regularizers_CPU/PatchBased_Regul_core.c +++ /dev/null @@ -1,213 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "PatchBased_Regul_core.h" - -/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). - * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function - * - * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" - * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" - * - * Input Parameters: - * 1. Image (2D or 3D) [required] - * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional] - * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional] - * 4. h - parameter for the PB penalty function [optional] - * 5. lambda - regularization parameter [optional] - - * Output: - * 1. regularized (denoised) Image (N x N)/volume (N x N x N) - * - * 2D denoising example in Matlab: - Im = double(imread('lena_gray_256.tif'))/255; % loading image - u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise - ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); - - * D. Kazantsev * - * 02/07/2014 - * Harwell, UK - */ - -/*2D version function */ -float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda) -{ - int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full; - float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1; - - /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ - SimilW_full = 2*SimilW + 1; /* the full similarity window size */ - h2 = h*h; - denh2 = 1/(2*h2); - - /*Gaussian kernel */ - Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float)); - count = 0; - for(i_n=-SimilW; i_n<=SimilW; i_n++) { - for(j_n=-SimilW; j_n<=SimilW; j_n++) { - t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2); - Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW)); - count = count + 1; - }} /*main neighb loop */ - - /*The NLM code starts here*/ - /* setting OMP here */ - #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value) - - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) { - - /* Massive Search window loop */ - Weight_norm = 0; value = 0.0; - for(i_m=-SearchW; i_m<=SearchW; i_m++) { - for(j_m=-SearchW; j_m<=SearchW; j_m++) { - /*checking boundaries*/ - i1 = i+i_m; j1 = j+j_m; - - WeightGlob = 0.0; - /* if inside the searching window */ - for(i_l=-SimilW; i_l<=SimilW; i_l++) { - for(j_l=-SimilW; j_l<=SimilW; j_l++) { - i2 = i1+i_l; j2 = j1+j_l; - - i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */ - - count = 0; normsum = 0.0; - for(i_p=-SimilW; i_p<=SimilW; i_p++) { - for(j_p=-SimilW; j_p<=SimilW; j_p++) { - i5 = i2 + i_p; j5 = j2 + j_p; - normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2); - count = count + 1; - }} - if (normsum != 0) Weight = (exp(-normsum*denh2)); - else Weight = 0.0; - WeightGlob += Weight; - }} - - value += A[i1*dimY+j1]*WeightGlob; - Weight_norm += WeightGlob; - }} /*search window loop end*/ - - /* the final loop to average all values in searching window with weights */ - denom = 1 + lambda*Weight_norm; - B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom; - } - }} /*main loop*/ - return (*B); - free(Eucl_Vec); -} - -/*3D version*/ - float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda) - { - int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5; - float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob; - - /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ - SimilW_full = 2*SimilW + 1; /* the full similarity window size */ - h2 = h*h; - denh2 = 1/(2*h2); - - /*Gaussian kernel */ - Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float)); - count = 0; - for(i_n=-SimilW; i_n<=SimilW; i_n++) { - for(j_n=-SimilW; j_n<=SimilW; j_n++) { - for(k_n=-SimilW; k_n<=SimilW; k_n++) { - Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW)); - count = count + 1; - }}} /*main neighb loop */ - - /*The NLM code starts here*/ - /* setting OMP here */ - #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) { - /* take all elements around the pixel of interest */ - /* Massive Search window loop */ - Weight_norm = 0; value = 0.0; - for(i_m=-SearchW; i_m<=SearchW; i_m++) { - for(j_m=-SearchW; j_m<=SearchW; j_m++) { - for(k_m=-SearchW; k_m<=SearchW; k_m++) { - /*checking boundaries*/ - i1 = i+i_m; j1 = j+j_m; k1 = k+k_m; - - WeightGlob = 0.0; - /* if inside the searching window */ - for(i_l=-SimilW; i_l<=SimilW; i_l++) { - for(j_l=-SimilW; j_l<=SimilW; j_l++) { - for(k_l=-SimilW; k_l<=SimilW; k_l++) { - i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l; - - i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */ - - count = 0; normsum = 0.0; - for(i_p=-SimilW; i_p<=SimilW; i_p++) { - for(j_p=-SimilW; j_p<=SimilW; j_p++) { - for(k_p=-SimilW; k_p<=SimilW; k_p++) { - i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p; - normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2); - count = count + 1; - }}} - if (normsum != 0) Weight = (exp(-normsum*denh2)); - else Weight = 0.0; - WeightGlob += Weight; - }}} - value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob; - Weight_norm += WeightGlob; - - }}} /*search window loop end*/ - - /* the final loop to average all values in searching window with weights */ - denom = 1 + lambda*Weight_norm; - B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom; - } - }}} /*main loop*/ - free(Eucl_Vec); - return *B; -} - -float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop) -{ - /* padding-cropping function */ - int i,j,k; - if (NewSizeZ > 1) { - for (i=0; i < NewSizeX; i++) { - for (j=0; j < NewSizeY; j++) { - for (k=0; k < NewSizeZ; k++) { - if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) { - if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)]; - else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j]; - } - }}} - } - else { - for (i=0; i < NewSizeX; i++) { - for (j=0; j < NewSizeY; j++) { - if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) { - if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)]; - else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j]; - } - }} - } - return *Ap; -}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/main_func/regularizers_CPU/PatchBased_Regul_core.h deleted file mode 100644 index d4a8a46..0000000 --- a/main_func/regularizers_CPU/PatchBased_Regul_core.h +++ /dev/null @@ -1,69 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#define _USE_MATH_DEFINES - -//#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" - -/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). -* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function -* -* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" -* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" -* -* Input Parameters (mandatory): -* 1. Image (2D or 3D) -* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) -* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) -* 4. h - parameter for the PB penalty function -* 5. lambda - regularization parameter - -* Output: -* 1. regularized (denoised) Image (N x N)/volume (N x N x N) -* -* Quick 2D denoising example in Matlab: -Im = double(imread('lena_gray_256.tif'))/255; % loading image -u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -* -* Please see more tests in a file: -TestTemporalSmoothing.m - -* -* Matlab + C/mex compilers needed -* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" -* -* D. Kazantsev * -* 02/07/2014 -* Harwell, UK -*/ -#ifdef __cplusplus -extern "C" { -#endif -float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); -float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda); -float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda); -#ifdef __cplusplus -} -#endif
\ No newline at end of file diff --git a/main_func/regularizers_CPU/SplitBregman_TV.c b/main_func/regularizers_CPU/SplitBregman_TV.c deleted file mode 100644 index 38f6a9d..0000000 --- a/main_func/regularizers_CPU/SplitBregman_TV.c +++ /dev/null @@ -1,179 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "mex.h" -#include <matrix.h> -#include "SplitBregman_TV_core.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambda - regularization parameter - * 3. Number of iterations [OPTIONAL parameter] - * 4. eplsilon - tolerance constant [OPTIONAL parameter] - * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] - * - * Output: - * Filtered/regularized image - * - * Example: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; - * u = SplitBregman_TV(single(u0), 10, 30, 1e-04); - * - * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" - * References: - * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. - * D. Kazantsev, 2016* - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV; - const int *dim_array; - float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - - /*Handling Matlab input data*/ - A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 35; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if (nrhs == 5) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - lambda = 2.0f*mu; - count = 1; - re_old = 0.0f; - /*Handling Matlab output data*/ - dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - copyIm(A, U, dimX, dimY, dimZ); /*initialize */ - - /* begin outer SB iterations */ - for(ll=0; ll<iter; ll++) { - - /*storing old values*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*GS iteration */ - gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); - - if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); - else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); - - updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(U_old[j] - U[j],2); - re1 += pow(U_old[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; - } - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*copyIm(U_old, U, dimX, dimY, dimZ); */ - } - printf("SB iterations stopped at iteration: %i\n", ll); - } - if (number_of_dims == 3) { - U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - copyIm(A, U, dimX, dimY, dimZ); /*initialize */ - - /* begin outer SB iterations */ - for(ll=0; ll<iter; ll++) { - - /*storing old values*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*GS iteration */ - gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); - - if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); - else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); - - updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); - - /* calculate norm to terminate earlier */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(U[j] - U_old[j],2); - re1 += pow(U[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) break; - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) break; } - /*printf("%f %i %i \n", re, ll, count); */ - re_old = re; - } - printf("SB iterations stopped at iteration: %i\n", ll); - } -}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/main_func/regularizers_CPU/SplitBregman_TV_core.c deleted file mode 100644 index 4109a4b..0000000 --- a/main_func/regularizers_CPU/SplitBregman_TV_core.c +++ /dev/null @@ -1,259 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "SplitBregman_TV_core.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularization parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -* -* References: -* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. -* D. Kazantsev, 2016* -*/ - - -/* 2D-case related Functions */ -/*****************************************************************/ -float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu) -{ - float sum, normConst; - int i,j,i1,i2,j1,j2; - normConst = 1.0f/(mu + 4.0f*lambda); - -#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum) - for(i=0; i<dimX; i++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - - sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)]; - sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]); - sum *= lambda; - sum += mu*A[(i)*dimY + (j)]; - U[(i)*dimY + (j)] = normConst*sum; - }} - return *U; -} - -float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) -{ - int i,j,i1,j1; - float val1, val11, val2, val22, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; - val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; - - val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; - val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; - - if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0; - if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0; - - }} - return 1; -} -float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) -{ - int i,j,i1,j1; - float val1, val11, val2, denom, denom_lam; - denom_lam = 1.0f/lambda; - -#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; - val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; - - denom = sqrt(val1*val1 + val2*val2); - - val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[(i)*dimY + (j)] = val11*(val1/denom); - Dy[(i)*dimY + (j)] = val11*(val2/denom); - } - else { - Dx[(i)*dimY + (j)] = 0; - Dy[(i)*dimY + (j)] = 0; - } - }} - return 1; -} -float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY) -{ - int i,j,i1,j1; -#pragma omp parallel for shared(U) private(i,j,i1,j1) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - - Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]); - By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]); - }} - return 1; -} - - -/* 3D-case related Functions */ -/*****************************************************************/ -float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu) -{ - float normConst, d_val, b_val, sum; - int i,j,i1,i2,j1,j2,k,k1,k2; - normConst = 1.0f/(mu + 6.0f*lambda); -#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - i2 = i-1; if (i2 < 0) i2 = i+1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - j2 = j-1; if (j2 < 0) j2 = j+1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - k2 = k-1; if (k2 < 0) k2 = k+1; - - d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)]; - b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)]; - sum = d_val + b_val; - sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)]; - sum *= lambda; - sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)]; - U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum; - }}} - return *U; -} - -float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) -{ - int i,j,i1,j1,k,k1,index; - float val1, val11, val2, val22, val3, val33, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - index = (dimX*dimY)*k + (i)*dimY + (j); - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; - val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; - val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; - - val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; - val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; - val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0; - - if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0; - if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0; - if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0; - - }}} - return 1; -} -float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) -{ - int i,j,i1,j1,k,k1,index; - float val1, val11, val2, val3, denom, denom_lam; - denom_lam = 1.0f/lambda; -#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - index = (dimX*dimY)*k + (i)*dimY + (j); - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; - val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; - val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; - - denom = sqrt(val1*val1 + val2*val2 + val3*val3); - - val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; - - if (denom != 0.0f) { - Dx[index] = val11*(val1/denom); - Dy[index] = val11*(val2/denom); - Dz[index] = val11*(val3/denom); - } - else { - Dx[index] = 0; - Dy[index] = 0; - Dz[index] = 0; - } - }}} - return 1; -} -float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ) -{ - int i,j,k,i1,j1,k1; -#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - i1 = i+1; if (i1 == dimX) i1 = i-1; - j1 = j+1; if (j1 == dimY) j1 = j-1; - k1 = k+1; if (k1 == dimZ) k1 = k-1; - - Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]); - By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]); - Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]); - - }}} - return 1; -} diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/main_func/regularizers_CPU/SplitBregman_TV_core.h deleted file mode 100644 index 6ed3ff9..0000000 --- a/main_func/regularizers_CPU/SplitBregman_TV_core.h +++ /dev/null @@ -1,69 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ -//#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" - -#include "utils.h" - -/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularization parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -* -* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: -* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. -* D. Kazantsev, 2016* -*/ - -#ifdef __cplusplus -extern "C" { -#endif - -//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); -float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu); -float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); -float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); -float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY); - -float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu); -float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); -float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); -float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ); - -#ifdef __cplusplus -} -#endif
\ No newline at end of file diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c deleted file mode 100644 index c9cb440..0000000 --- a/main_func/regularizers_CPU/TGV_PD.c +++ /dev/null @@ -1,144 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TGV_PD_core.h" -#include "mex.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model (2D case only) - * - * Input Parameters: - * 1. Noisy image/volume (2D) - * 2. lambda - regularization parameter - * 3. parameter to control first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of CP iterations - * - * Output: - * Filtered/regularized image - * - * Example: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .03*randn(size(Im)); % adding noise - * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc; - * - * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" - * References: - * K. Bredies "Total Generalized Variation" - * - * 28.11.16/Harwell - */ - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, dimX, dimY, dimZ, ll; - const int *dim_array; - float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/ - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } - lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/ - alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/ - alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/ - iter = (int) mxGetScalar(prhs[4]); /*iterations number*/ - if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; - - if (number_of_dims == 2) { - /*2D case*/ - dimZ = 1; - U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - /*dual variables*/ - P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - - /*printf("%i \n", i);*/ - L2 = 12.0f; /*Lipshitz constant*/ - tau = 1.0/pow(L2,0.5); - sigma = 1.0/pow(L2,0.5); - - /*Copy A to U*/ - copyIm(A, U, dimX, dimY, dimZ); - - /* Here primal-dual iterations begin for 2D */ - for(ll = 0; ll < iter; ll++) { - - /* Calculate Dual Variable P */ - DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); - - /*Projection onto convex set for P*/ - ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); - - /* Calculate Dual Variable Q */ - DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); - - /*Projection onto convex set for Q*/ - ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); - - /*saving U into U_old*/ - copyIm(U, U_old, dimX, dimY, dimZ); - - /*adjoint operation -> divergence and projection of P*/ - DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); - - /*get updated solution U*/ - newU(U, U_old, dimX, dimY, dimZ); - - /*saving V into V_old*/ - copyIm(V1, V1_old, dimX, dimY, dimZ); - copyIm(V2, V2_old, dimX, dimY, dimZ); - - /* upd V*/ - UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); - - /*get new V*/ - newU(V1, V1_old, dimX, dimY, dimZ); - newU(V2, V2_old, dimX, dimY, dimZ); - } /*end of iterations*/ - } - else if (number_of_dims == 3) { - mexErrMsgTxt("The input data should be a 2D array"); - /*3D case*/ - } - else {mexErrMsgTxt("The input data should be a 2D array");} - -} diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/main_func/regularizers_CPU/TGV_PD_core.c deleted file mode 100644 index 4139d10..0000000 --- a/main_func/regularizers_CPU/TGV_PD_core.c +++ /dev/null @@ -1,208 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "TGV_PD_core.h" - -/* C-OMP implementation of Primal-Dual denoising method for - * Total Generilized Variation (TGV)-L2 model (2D case only) - * - * Input Parameters: - * 1. Noisy image/volume (2D) - * 2. lambda - regularization parameter - * 3. parameter to control first-order term (alpha1) - * 4. parameter to control the second-order term (alpha0) - * 5. Number of CP iterations - * - * Output: - * Filtered/regularized image - * - * Example: - * figure; - * Im = double(imread('lena_gray_256.tif'))/255; % loading image - * u0 = Im + .03*randn(size(Im)); % adding noise - * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; - * - * References: - * K. Bredies "Total Generalized Variation" - * - * 28.11.16/Harwell - */ - - - - -/*Calculating dual variable P (using forward differences)*/ -float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j; -#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); - else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); - if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); - else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); - }} - return 1; -} -/*Projection onto convex set for P*/ -float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1) -{ - float grad_magn; - int i,j; -#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2)); - grad_magn = grad_magn/alpha1; - if (grad_magn > 1.0) { - P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn; - P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn; - } - }} - return 1; -} -/*Calculating dual variable Q (using forward differences)*/ -float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j; - float q1, q2, q11, q22; -#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) - { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]); - q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]); - } - else { - q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]); - q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]); - } - if (j == dimY-1) { - q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]); - q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]); - } - else { - q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]); - q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]); - } - Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1); - Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2); - Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22)); - }} - return 1; -} - -float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0) -{ - float grad_magn; - int i,j; -#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2)); - grad_magn = grad_magn/alpha0; - if (grad_magn > 1.0) { - Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn; - Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn; - Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn; - } - }} - return 1; -} -/* Divergence and projection for P*/ -float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau) -{ - int i,j; - float P_v1, P_v2, div; -#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - if (i == 0) P_v1 = (P1[i*dimY + (j)]); - else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]); - if (j == 0) P_v2 = (P2[i*dimY + (j)]); - else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]); - div = P_v1 + P_v2; - U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau); - }} - return *U; -} -/*get updated solution U*/ -float newU(float *U, float *U_old, int dimX, int dimY, int dimZ) -{ - int i; -#pragma omp parallel for shared(U,U_old) private(i) - for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i]; - return *U; -} - -/*get update for V*/ -float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau) -{ - int i,j; - float q1, q11, q2, q22, div1, div2; -#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - /* symmetric boundary conditions (Neuman) */ - if (i == 0) { - q1 = (Q1[i*dimY + (j)]); - q11 = (Q3[i*dimY + (j)]); - } - else { - q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]); - q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]); - } - if (j == 0) { - q2 = (Q2[i*dimY + (j)]); - q22 = (Q3[i*dimY + (j)]); - } - else { - q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]); - q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]); - } - div1 = q1 + q22; - div2 = q2 + q11; - V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1); - V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2); - }} - return 1; -} -/*********************3D *********************/ - -/*Calculating dual variable P (using forward differences)*/ -float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) -{ - int i,j,k; -#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k) - for(i=0; i<dimX; i++) { - for(j=0; j<dimY; j++) { - for(k=0; k<dimZ; k++) { - /* symmetric boundary conditions (Neuman) */ - if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); - else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); - if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); - else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); - if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); - else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); - }}} - return 1; -}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/main_func/regularizers_CPU/TGV_PD_core.h deleted file mode 100644 index d5378df..0000000 --- a/main_func/regularizers_CPU/TGV_PD_core.h +++ /dev/null @@ -1,67 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -//#include <matrix.h> -#include <math.h> -#include <stdlib.h> -#include <memory.h> -#include <stdio.h> -#include "omp.h" -#include "utils.h" - -/* C-OMP implementation of Primal-Dual denoising method for -* Total Generilized Variation (TGV)-L2 model (2D case only) -* -* Input Parameters: -* 1. Noisy image/volume (2D) -* 2. lambda - regularization parameter -* 3. parameter to control first-order term (alpha1) -* 4. parameter to control the second-order term (alpha0) -* 5. Number of CP iterations -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .03*randn(size(Im)); % adding noise -* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; -* -* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: -* K. Bredies "Total Generalized Variation" -* -* 28.11.16/Harwell -*/ -#ifdef __cplusplus -extern "C" { -#endif -/* 2D functions */ -float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma); -float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1); -float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma); -float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0); -float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau); -float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau); -float newU(float *U, float *U_old, int dimX, int dimY, int dimZ); -//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); -#ifdef __cplusplus -} -#endif diff --git a/main_func/regularizers_CPU/utils.c b/main_func/regularizers_CPU/utils.c deleted file mode 100644 index 0e83d2c..0000000 --- a/main_func/regularizers_CPU/utils.c +++ /dev/null @@ -1,29 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazanteev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -#include "utils.h" - -/* Copy Image */ -float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) -{ - int j; -#pragma omp parallel for shared(A, U) private(j) - for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; - return *U; -}
\ No newline at end of file diff --git a/main_func/regularizers_CPU/utils.h b/main_func/regularizers_CPU/utils.h deleted file mode 100644 index 53463a3..0000000 --- a/main_func/regularizers_CPU/utils.h +++ /dev/null @@ -1,32 +0,0 @@ -/* -This work is part of the Core Imaging Library developed by -Visual Analytics and Imaging System Group of the Science Technology -Facilities Council, STFC - -Copyright 2017 Daniil Kazantsev -Copyright 2017 Srikanth Nagella, Edoardo Pasca - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at -http://www.apache.org/licenses/LICENSE-2.0 -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -*/ - -//#include <matrix.h> -//#include <math.h> -#include <stdlib.h> -#include <memory.h> -//#include <stdio.h> -#include "omp.h" -#ifdef __cplusplus -extern "C" { -#endif -float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); -#ifdef __cplusplus -} -#endif diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp deleted file mode 100644 index 5a8c7c0..0000000 --- a/main_func/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp +++ /dev/null @@ -1,114 +0,0 @@ -#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "Diff4th_GPU_kernel.h"
-
-/*
- * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
- *
- * Reference :
- * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
- *
- * Example
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
- * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
- * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
- *
- *
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
- */
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int numdims, dimZ, size;
- float *A, *B, *A_L, *B_L;
- const int *dims;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
- float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
- int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
-
- if (numdims == 2) {
-
- int N, M, Z, i, j;
- Z = 0; // for the 2D case
- float tau = 0.01; // time step is sufficiently small for an explicit methods
-
- /*Input data*/
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
-
- /*Output data*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
- }}
-
- // Running CUDA code here
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
- }}
- }
- if (numdims == 3) {
- // 3D image denoising / regularization
- int N, M, Z, i, j, k;
- float tau = 0.0007; // Time Step is small for an explicit methods
- A = (float*)mxGetData(prhs[0]);
- N = dims[0] + 2;
- M = dims[1] + 2;
- Z = dims[2] + 2;
- int N_dims[] = {N, M, Z};
- A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
-
- /* output data */
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
-
- // copy A to the bigger A_L with boundaries
- #pragma omp parallel for shared(A_L, A) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
- }}}}
-
- // Running CUDA kernel here for diffusivity
- Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
-
- // copy the processed B_L to a smaller B
- #pragma omp parallel for shared(B_L, B) private(i,j,k)
- for (i=0; i < N; i++) {
- for (j=0; j < M; j++) {
- for (k=0; k < Z; k++) {
- if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
- B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
- }}}}
- }
-}
\ No newline at end of file diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu deleted file mode 100644 index 178af00..0000000 --- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu +++ /dev/null @@ -1,270 +0,0 @@ -#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "Diff4th_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
-#define sizeT (sizeX*sizeY*sizeZ)
-#define epsilon 0.00000001
-
-/////////////////////////////////////////////////
-// 2D Image denosing - Second Step (The second derrivative)
-__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0;
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc));
-}
-
-// 2D Image denosing - The First Step
-__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2, V_norm, V_orth, c, c_sq;
-
- int i = blockIdx.x*blockDim.x + threadIdx.x;
- int j = blockIdx.y*blockDim.y + threadIdx.y;
-
- int index = j + i*N;
-
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
- return; }
-
- int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
- int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
- int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
- int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
- int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index;
- int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index;
- int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index;
- int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- xy_2 = 2.0f*gradX*gradY*gradXY;
- sq_sum = gradX_sq + gradY_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum;
- V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum; }
-
- c = 1.0f/(1.0f + sq_sum/sigma);
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/////////////////////////////////////////////////
-// 3D data parocerssing
-__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- float gradXXc = 0, gradYYc = 0, gradZZc = 0;
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
- gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
- gradZZc = B[indexU] + B[indexD] - 2*B[index] ;
-
- A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc));
-}
-
-__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau)
-{
- float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq;
-
- int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
- int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
- int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
-
- int index = xIndex + M*yIndex + N*M*zIndex;
- V_norm = 0.0f; V_orth = 0.0f;
-
- if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
- return; }
-
- B[index] = 0;
-
- int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
- int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
- int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
- int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
- int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
- int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
-
- int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex; if (A[indexNW] == 0) indexNW = index;
- int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex; if (A[indexNE] == 0) indexNE = index;
- int indexWS = (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index;
- int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex; if (A[indexES] == 0) indexES = index;
-
- int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index;
- int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index;
- int indexDW = (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index;
- int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index;
-
- int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1); if (A[indexUN] == 0) indexUN = index;
- int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1); if (A[indexUS] == 0) indexUS = index;
- int indexDN = (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index;
- int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1); if (A[indexDS] == 0) indexDS = index;
-
- gradX = 0.5f*(A[indexN]-A[indexS]);
- gradX_sq = gradX*gradX;
- gradXX = A[indexN] + A[indexS] - 2*A[index];
-
- gradY = 0.5f*(A[indexW]-A[indexE]);
- gradY_sq = gradY*gradY;
- gradYY = A[indexW] + A[indexE] - 2*A[index];
-
- gradZ = 0.5f*(A[indexU]-A[indexD]);
- gradZ_sq = gradZ*gradZ;
- gradZZ = A[indexU] + A[indexD] - 2*A[index];
-
- gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
- gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]);
- gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]);
-
- xy_2 = 2.0f*gradX*gradY*gradXY;
- xyz_1 = 2.0f*gradX*gradZ*gradXZ;
- xyz_2 = 2.0f*gradY*gradZ*gradYZ;
-
- sq_sum = gradX_sq + gradY_sq + gradZ_sq;
-
- if (sq_sum <= epsilon) {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon; }
- else {
- V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum;
- V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum; }
-
- c = 1;
- if ((1.0f + sq_sum/sigma) != 0.0f) {c = 1.0f/(1.0f + sq_sum/sigma);}
-
- c_sq = c*c;
- B[index] = c_sq*V_norm + c*V_orth;
-}
-
-/******************************************************/
-/********* HOST FUNCTION*************/
-extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
- int BLKXSIZE, BLKYSIZE,BLKZSIZE;
- float *Ad, *Bd, *Cd;
- sigma = sigma*sigma;
-
- if (Z == 0){
- // 4th order diffusion for 2D case
- BLKXSIZE = 8;
- BLKYSIZE = 16;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-
- if (Z != 0){
- // 4th order diffusion for 3D case
- BLKXSIZE = 8;
- BLKYSIZE = 8;
- BLKZSIZE = 8;
-
- dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
- dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
-
- checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)));
- checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float)));
-
- checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
- checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
-
- int n = 1;
- while (n <= iter) {
- Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda);
- cudaDeviceSynchronize();
- checkCudaErrors( cudaPeekAtLastError() );
- n++;
- }
- checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
- cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
- }
-}
\ No newline at end of file diff --git a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h deleted file mode 100644 index cfbb45a..0000000 --- a/main_func/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h +++ /dev/null @@ -1,6 +0,0 @@ -#ifndef __DIFF_HO_H_ -#define __DIFF_HO_H_ - -extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda); - -#endif diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp deleted file mode 100644 index ff0cc90..0000000 --- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU.cpp +++ /dev/null @@ -1,171 +0,0 @@ -#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include <iostream>
-#include "NLM_GPU_kernel.h"
-
-/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes
- * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
- *
- * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
- * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
- *
- * Input Parameters (mandatory):
- * 1. Image/volume (2D/3D)
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
- * 4. h - parameter for the PB penalty function
- * 5. lambda - regularization parameter
-
- * Output:
- * 1. regularized (denoised) Image/volume (N x N x N)
- *
- * In matlab check what kind of GPU you have with "gpuDevice" command,
- * then set your ComputeCapability, here I use -arch compute_35
- *
- * Quick 2D denoising example in Matlab:
- Im = double(imread('lena_gray_256.tif'))/255; % loading image
- u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
-
- * Linux/Matlab compilation:
- * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
- * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
- *
- * D. Kazantsev
- * 2014-17
- * Harwell/Manchester UK
- */
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-{
- int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
- const int *dims;
- float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
-
- numdims = mxGetNumberOfDimensions(prhs[0]);
- dims = mxGetDimensions(prhs[0]);
-
- N = dims[0];
- M = dims[1];
- Z = dims[2];
-
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
-
- if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
-
- /*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
- SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- lambda = (float) mxGetScalar(prhs[4]);
-
- if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
-
- SearchW = SearchW_real + 2*SimilW;
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
- newsizeX = N + 2*(padXY); /* the X size of the padded array */
- newsizeY = M + 2*(padXY); /* the Y size of the padded array */
- newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
- int N_dims[] = {newsizeX, newsizeY, newsizeZ};
-
- /******************************2D case ****************************/
- if (numdims == 2) {
- /*Handling output*/
- B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }} /*main neighb loop */
-
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
- }
- else
- {
- /******************************3D case ****************************/
- /*Handling output*/
- B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
- /*allocating memory for the padded arrays */
- Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
- Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
-
- /*Gaussian kernel */
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
- Eucl_Vec[count] = exp(-val);
- count = count + 1;
- }}} /*main neighb loop */
- /**************************************************************************/
- /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
- switchpad_crop = 0; /*padding*/
- pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
-
- /* Do PB regularization with the padded array */
- NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
-
- switchpad_crop = 1; /*cropping*/
- pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
- } /*end else ndims*/
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-}
\ No newline at end of file diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu deleted file mode 100644 index 17da3a8..0000000 --- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu +++ /dev/null @@ -1,239 +0,0 @@ -#include <stdio.h>
-#include <stdlib.h>
-#include <memory.h>
-#include "NLM_GPU_kernel.h"
-
-#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
-
-inline void __checkCudaErrors(cudaError err, const char *file, const int line)
-{
- if (cudaSuccess != err)
- {
- fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
- file, line, (int)err, cudaGetErrorString(err));
- exit(EXIT_FAILURE);
- }
-}
-
-extern __shared__ float sharedmem[];
-
-// run PB den kernel here
-__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda, dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize)
-{
-
- int i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count;
- float value, Weight_norm, normsum, Weight;
-
- int bidx = blockIdx.x;
- int bidy = blockIdx.y%griddim.y;
- int bidz = (int)((blockIdx.y)/griddim.y);
-
- // global index for block endpoint
- int beidx = __mul24(bidx,blockDim.x);
- int beidy = __mul24(bidy,blockDim.y);
- int beidz = __mul24(bidz,blockDim.z);
-
- int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) +
- __mul24(threadIdx.y,blockDim.x) + threadIdx.x;
-
- #ifdef __DEVICE_EMULATION__
- printf("tid : %d", tid);
- #endif
-
- // update shared memory
- int nthreads = blockDim.x*blockDim.y*blockDim.z;
- int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z;
- for(int i=0; i<nUpdatePerThread; i++)
- {
- int sid = tid + i*nthreads; // index in shared memory
- if (sid < sharedMemSize)
- {
- // global x/y/z index in volume
- int gidx, gidy, gidz;
- int sidx, sidy, sidz, tid;
-
- sidz = sid / (sharedmemdim.x*sharedmemdim.y);
- tid = sid - sidz*(sharedmemdim.x*sharedmemdim.y);
- sidy = tid / (sharedmemdim.x);
- sidx = tid - sidy*(sharedmemdim.x);
-
- gidx = (int)sidx - (int)kerneldim.x + (int)beidx;
- gidy = (int)sidy - (int)kerneldim.y + (int)beidy;
- gidz = (int)sidz - (int)kerneldim.z + (int)beidz;
-
- // Neumann boundary condition
- int cx = (int) min(max(0,gidx),imagedim.x-1);
- int cy = (int) min(max(0,gidy),imagedim.y-1);
- int cz = (int) min(max(0,gidz),imagedim.z-1);
-
- int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx;
-
- sharedmem[sid] = Ad[gid];
- }
- }
- __syncthreads();
-
- // global index of the current voxel in the input volume
- int idx = beidx + threadIdx.x;
- int idy = beidy + threadIdx.y;
- int idz = beidz + threadIdx.z;
-
- if (Z == 1) {
- /* 2D case */
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY))
- {
- int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[j1*sharedmemdim.x+i1]*Weight;
- }}
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /*boundary conditions end*/
- }
- else {
- /*3D case*/
- /*checking boundaries to be within the image and avoid padded spaces */
- if( idx >= padXY && idx < (imagedim.x - padXY) &&
- idy >= padXY && idy < (imagedim.y - padXY) &&
- idz >= padXY && idz < (imagedim.z - padXY) )
- {
- int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */
- int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */
- int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */
-
- if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) {
-
- Weight_norm = 0; value = 0.0;
- /* Massive Search window loop */
- for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
- for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
- for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) {
- /* if inside the searching window */
- count = 0; normsum = 0.0;
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
- i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l; /*coordinates of the inner patch loop */
- if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) {
- if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) {
- normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2);
- }}
- count++;
- }}}
- if (normsum != 0) Weight = (expf(-normsum/h2));
- else Weight = 0.0;
- Weight_norm += Weight;
- value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight;
- }}} /* BIG search window loop end*/
-
-
- if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
- else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
- }
- } /* boundary conditions end */
- }
-}
-
-/////////////////////////////////////////////////
-// HOST FUNCTION
-extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda)
-{
- int deviceCount = -1; // number of devices
- cudaGetDeviceCount(&deviceCount);
- if (deviceCount == 0) {
- fprintf(stderr, "No CUDA devices found\n");
- return;
- }
-
-// cudaDeviceReset();
-
- int padXY, SearchW_full, SimilW_full, blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth;
- float *Ad, *Bd, *Eucl_Vec_d;
-
- if (dimension == 2) {
- blockWidth = 16;
- blockHeight = 16;
- blockDepth = 1;
- Z = 1;
- kernel_depth = 0;
- }
- else {
- blockWidth = 8;
- blockHeight = 8;
- blockDepth = 8;
- kernel_depth = SearchW;
- }
-
- // compute how many blocks are needed
- nBlockX = ceil((float)N / (float)blockWidth);
- nBlockY = ceil((float)M / (float)blockHeight);
- nBlockZ = ceil((float)Z / (float)blockDepth);
-
- dim3 dimGrid(nBlockX,nBlockY*nBlockZ);
- dim3 dimBlock(blockWidth, blockHeight, blockDepth);
- dim3 imagedim(N,M,Z);
- dim3 griddim(nBlockX,nBlockY,nBlockZ);
-
- dim3 kerneldim(SearchW,SearchW,kernel_depth);
- dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth);
- int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z;
- int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth));
- float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1);
-
- padXY = SearchW + 2*SimilW; /* padding sizes */
-
- SearchW_full = 2*SearchW + 1; /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
-
- /*allocate space for images on device*/
- checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) );
- checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) );
- /*allocate space for vectors on device*/
- if (dimension == 2) {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
- else {
- checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) );
- checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
- }
-
- /* copy data from the host to device */
- checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) );
-
- // Run CUDA kernel here
- NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize);
-
- checkCudaErrors( cudaPeekAtLastError() );
-// gpuErrchk( cudaDeviceSynchronize() );
-
- checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
- cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
-}
diff --git a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h deleted file mode 100644 index bc9d4a3..0000000 --- a/main_func/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h +++ /dev/null @@ -1,6 +0,0 @@ -#ifndef __NLMREG_KERNELS_H_ -#define __NLMREG_KERNELS_H_ - -extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda); - -#endif diff --git a/main_func/studentst.m b/main_func/studentst.m deleted file mode 100644 index 93e0a0a..0000000 --- a/main_func/studentst.m +++ /dev/null @@ -1,47 +0,0 @@ -function [f,g,h,s,k] = studentst(r,k,s)
-% Students T penalty with 'auto-tuning'
-%
-% use:
-% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
-% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
-% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
-%
-% input:
-% r - residual as column vector
-% s - scale (optional)
-% k - degrees of freedom (optional)
-%
-% output:
-% f - misfit (scalar)
-% g - gradient (column vector)
-% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
-% s,k - scale and degrees of freedom
-%
-% Tristan van Leeuwen, 2012.
-% tleeuwen@eos.ubc.ca
-
-% fit both s and k
-if nargin == 1
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
- s = tmp(1);
- k = tmp(2);
-end
-
-
-if nargin == 2
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x,k),[1],opts);
- s = tmp(1);
-end
-
-% evaulate penalty
-[f,g,h] = st(r,s,k);
-
-
-function [f,g,h] = st(r,s,k)
-n = length(r);
-c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
-f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
-g = (k+1)*r./(s*k + conj(r).*r);
-h = (k+1)./(s*k + conj(r).*r);
|