diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-08-03 15:25:50 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-08-03 15:25:50 +0100 |
commit | d7281b95f70dd3707f82640972a52f4155c2fde5 (patch) | |
tree | 59e2bd1a8c0a3b18fa64d6c7d7549cf074fe3b58 /main_func | |
parent | e412e73b172a99776d108d3b4c1f8662a20e9fce (diff) | |
download | regularization-d7281b95f70dd3707f82640972a52f4155c2fde5.tar.gz regularization-d7281b95f70dd3707f82640972a52f4155c2fde5.tar.bz2 regularization-d7281b95f70dd3707f82640972a52f4155c2fde5.tar.xz regularization-d7281b95f70dd3707f82640972a52f4155c2fde5.zip |
Ordered Subset FISTA added and demos updated in DemoRD2
Diffstat (limited to 'main_func')
-rw-r--r-- | main_func/FISTA_REC.m | 404 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD.c | 6 |
2 files changed, 291 insertions, 119 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m index 43ed0cb..381fa34 100644 --- a/main_func/FISTA_REC.m +++ b/main_func/FISTA_REC.m @@ -1,6 +1,6 @@ function [X, output] = FISTA_REC(params) -% <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> +% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>> % ___Input___: % params.[] file: %----------------General Parameters------------------------ @@ -19,9 +19,9 @@ function [X, output] = FISTA_REC(params) % 3 .Regul_LambdaLLT (Higher order LLT regularization parameter) % 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term) % 4 .Regul_LambdaPatchBased (Patch-based nonlocal regularization parameter) -% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) -% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) -% 4.3 .Regul_PB_h (PB penalty function threshold) +% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) +% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) +% 4.3 .Regul_PB_h (PB penalty function threshold) % 5 .Regul_LambdaTGV (Total Generalized variation regularization parameter) % - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) % - .Regul_Iterations (iterations for the selected penalty, default 25) @@ -193,6 +193,11 @@ if (isfield(params,'Regul_PB_h')) else h_PB = 0.1; % default end +if (isfield(params,'Regul_LambdaTGV')) + LambdaTGV = params.Regul_LambdaTGV; +else + LambdaTGV = 0.01; +end if (isfield(params,'Ring_LambdaR_L1')) lambdaR_L1 = params.Ring_LambdaR_L1; else @@ -252,20 +257,17 @@ if (isfield(params,'initialize')) else X = zeros(N,N,SlicesZ, 'single'); % storage for the solution end -if (isfield(params,'OS')) +if (isfield(params,'subsets')) % Ordered Subsets reorganisation of data and angles - OS = 1; - subsets = 8; + subsets = params.subsets; % subsets number angles = proj_geom.ProjectionAngles; binEdges = linspace(min(angles),max(angles),subsets+1); % assign values to bins [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]); - % rearrange angles into subsets - AnglesReorg = zeros(length(angles),1); - SinoReorg = zeros(Detectors, anglesNumb, SlicesZ, 'single'); - + % get rearranged subset indices + IndicesReorg = zeros(length(angles),1); counterM = 0; for ii = 1:max(binsDiscr(:)) counter = 0; @@ -273,143 +275,313 @@ if (isfield(params,'OS')) curr_index = ii+jj-1 + counter; if (binsDiscr(jj) >= ii) counterM = counterM + 1; - AnglesReorg(counterM) = angles(curr_index); - SinoReorg(:,counterM,:) = squeeze(sino(:,curr_index,:)); + IndicesReorg(counterM) = curr_index; end counter = (counter + binsDiscr(jj)) - 1; end end - sino = SinoReorg; - clear SinoReorg; -else - OS = 0; % normal FISTA +else + subsets = 0; % Classical FISTA end - %----------------Reconstruction part------------------------ Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given) objective = zeros(iterFISTA,1); % objective function values vector -t = 1; -X_t = X; -r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors -r_x = r; % another ring variable -residual = zeros(size(sino),'single'); - -% Outer FISTA iterations loop -for i = 1:iterFISTA - - X_old = X; - t_old = t; - r_old = r; +if (subsets == 0) + % Classical FISTA + t = 1; + X_t = X; - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors + r_x = r; % another ring variable + residual = zeros(size(sino),'single'); - if (lambdaR_L1 > 0) - % ring removal part (Group-Huber fidelity) - for kkk = 1:anglesNumb - residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + % Outer FISTA iterations loop + for i = 1:iterFISTA + + X_old = X; + t_old = t; + r_old = r; + + [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + + if (lambdaR_L1 > 0) + % the ring removal part (Group-Huber fidelity) + for kkk = 1:anglesNumb + residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + vec = sum(residual,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; + else + % no ring removal + residual = weights.*(sino_updt - sino); end - vec = sum(residual,2); - if (SlicesZ > 1) - vec = squeeze(vec(:,1,:)); + + objective(i) = (0.5*norm(residual(:))^2)/(Detectors*anglesNumb*SlicesZ); % for the objective function output + + [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); + + X = X_t - (1/L_const).*x_temp; + astra_mex_data3d('delete', sino_id); + astra_mex_data3d('delete', id); + + % regularization + if (lambdaFGP_TV > 0) + % FGP-TV regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV, IterationsRegul, tol, 'iso'); + end + else + % 3D regularization + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso'); + end + objective(i) = objective(i) + f_val; end - r = r_x - (1./L_const).*vec; - else - % no ring removal - residual = weights.*(sino_updt - sino); - end - - objective(i) = (0.5*norm(residual(:))^2)/(Detectors*anglesNumb*SlicesZ); % for the objective function output - - [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); - - X = X_t - (1/L_const).*x_temp; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); - - % regularization - if (lambdaFGP_TV > 0) - % FGP-TV regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV, IterationsRegul, tol, 'iso'); + if (lambdaSB_TV > 0) + % Split Bregman regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) + end + else + % 3D regularization + X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) end - else - % 3D regularization - [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso'); end - objective(i) = objective(i) + f_val; - end - if (lambdaSB_TV > 0) - % Split Bregman regularization - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) + if (lambdaHO > 0) + % Higher Order (LLT) regularization + X2 = zeros(N,N,SlicesZ,'single'); + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO, tauHO, iterHO, 3.0e-05, 0); + end + else + % 3D regularization + X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0); end - else - % 3D regularization - X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent) + X = 0.5.*(X + X2); % averaged combination of two solutions end - end - if (lambdaHO > 0) - % Higher Order (LLT) regularization - X2 = zeros(N,N,SlicesZ,'single'); - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO, tauHO, iterHO, 3.0e-05, 0); + if (lambdaPB > 0) + % Patch-Based regularization (can be slow on CPU) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB); + end + else + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB); end - else - % 3D regularization - X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0); end - X = 0.5.*(X + X2); % averaged combination of two solutions - end - if (lambdaPB > 0) - % Patch-Based regularization (can be slow on CPU) - if ((strcmp('2D', Dimension) == 1)) - % 2D regularization - for kkk = 1:SlicesZ - X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB); + if (LambdaTGV > 0) + % Total Generalized variation (currently only 2D) + lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper + lamTGV2 = 0.5; % second-order term + for kkk = 1:SlicesZ + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV, lamTGV1, lamTGV2, IterationsRegul); + end + end + + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + end + + t = (1 + sqrt(1 + 4*t^2))/2; % updating t + X_t = X + ((t_old-1)/t).*(X - X_old); % updating X + + if (lambdaR_L1 > 0) + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + + if (show == 1) + figure(10); imshow(X(:,:,slice), [0 maxvalplot]); + if (lambdaR_L1 > 0) + figure(11); plot(r); title('Rings offset vector') end + pause(0.01); + end + if (strcmp(X_ideal, 'none' ) == 0) + Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); + fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); else - X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB); + fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); end - end - - - if (lambdaR_L1 > 0) - r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector end +else + % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than classical) + t = 1; + X_t = X; + proj_geomSUB = proj_geom; - t = (1 + sqrt(1 + 4*t^2))/2; % updating t - X_t = X + ((t_old-1)/t).*(X - X_old); % updating X - if (lambdaR_L1 > 0) - r_x = r + ((t_old-1)/t).*(r - r_old); % updating r - end + r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors + r_x = r; % another ring variable + residual2 = zeros(size(sino),'single'); - if (show == 1) - figure(10); imshow(X(:,:,slice), [0 maxvalplot]); - if (lambdaR_L1 > 0) - figure(11); plot(r); title('Rings offset vector') + % Outer FISTA iterations loop + for i = 1:iterFISTA + + % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required + % one solution is to work with a full sinogram at times + if ((i >= 3) && (lambdaR_L1 > 0)) + [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); + astra_mex_data3d('delete', sino_id2); + end + + % subsets loop + counterInd = 1; + for ss = 1:subsets + X_old = X; + t_old = t; + r_old = r; + + numProjSub = binsDiscr(ss); % the number of projections per subset + CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset + proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces); + + if (lambdaR_L1 > 0) + + % the ring removal part (Group-Huber fidelity) + % first 2 iterations do additional work reconstructing whole dataset to ensure + % stablility + if (i < 3) + [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + astra_mex_data3d('delete', sino_id2); + else + [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + end + + for kkk = 1:anglesNumb + residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt2(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + + residual = zeros(Detectors, numProjSub, SlicesZ,'single'); + for kkk = 1:numProjSub + indC = CurrSubIndeces(kkk); + if (i < 3) + residual(:,kkk,:) = squeeze(residual2(:,indC,:)); + else + residual(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + end + end + vec = sum(residual2,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; + else + [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + % no ring removal + residual = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt - squeeze(sino(:,CurrSubIndeces,:))); + end + + [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geomSUB, vol_geom); + + X = X_t - (1/L_const).*x_temp; + astra_mex_data3d('delete', sino_id); + astra_mex_data3d('delete', id); + + % regularization + if (lambdaFGP_TV > 0) + % FGP-TV regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/subsets, IterationsRegul, tol, 'iso'); + end + else + % 3D regularization + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/subsets, IterationsRegul, tol, 'iso'); + end + objective(i) = objective(i) + f_val; + end + if (lambdaSB_TV > 0) + % Split Bregman regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/subsets, IterationsRegul, tol); % (more memory efficent) + end + else + % 3D regularization + X = SplitBregman_TV(single(X), lambdaSB_TV/subsets, IterationsRegul, tol); % (more memory efficent) + end + end + if (lambdaHO > 0) + % Higher Order (LLT) regularization + X2 = zeros(N,N,SlicesZ,'single'); + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/subsets, tauHO/subsets, iterHO, 2.0e-05, 0); + end + else + % 3D regularization + X2 = LLT_model(single(X), lambdaHO/subsets, tauHO/subsets, iterHO, 2.0e-05, 0); + end + X = 0.5.*(X + X2); % averaged combination of two solutions + end + if (lambdaPB > 0) + % Patch-Based regularization (can be slow on CPU) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/subsets); + end + else + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/subsets); + end + end + if (LambdaTGV > 0) + % Total Generalized variation (currently only 2D) + lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper + lamTGV2 = 0.5; % second-order term + for kkk = 1:SlicesZ + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/subsets, lamTGV1, lamTGV2, IterationsRegul); + end + end + + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + end + + t = (1 + sqrt(1 + 4*t^2))/2; % updating t + X_t = X + ((t_old-1)/t).*(X - X_old); % updating X + + if (lambdaR_L1 > 0) + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + + counterInd = counterInd + numProjSub; + end + + if (show == 1) + figure(10); imshow(X(:,:,slice), [0 maxvalplot]); + if (lambdaR_L1 > 0) + figure(11); plot(r); title('Rings offset vector') + end + pause(0.01); + end + + if (strcmp(X_ideal, 'none' ) == 0) + Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); + fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); + else + fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); end - pause(0.01); - end - if (strcmp(X_ideal, 'none' ) == 0) - Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); - fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); - else - fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); end end + output.Resid_error = Resid_error; output.objective = objective; output.L_const = L_const; -output.sino = sino; -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + end diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c index d4bb787..6593d8e 100644 --- a/main_func/regularizers_CPU/TGV_PD.c +++ b/main_func/regularizers_CPU/TGV_PD.c @@ -37,9 +37,9 @@ limitations under the License. * figure; * Im = double(imread('lena_gray_256.tif'))/255; % loading image * u0 = Im + .03*randn(size(Im)); % adding noise - * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; + * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc; * - * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" * References: * K. Bredies "Total Generalized Variation" * @@ -92,7 +92,7 @@ void mexFunction( /*printf("%i \n", i);*/ - L2 = 12.0; /*Lipshitz constant*/ + L2 = 12.0f; /*Lipshitz constant*/ tau = 1.0/pow(L2,0.5); sigma = 1.0/pow(L2,0.5); |