diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-10 12:38:25 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-10 12:38:25 +0000 |
commit | 28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1 (patch) | |
tree | 23db70024debacb83034f98ab8c161fe62ae3839 /src/Python/test | |
parent | e5303410dc3e82a633c2a3ddbc535fdaa95cb671 (diff) | |
download | regularization-28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1.tar.gz regularization-28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1.tar.bz2 regularization-28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1.tar.xz regularization-28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1.zip |
some development
Diffstat (limited to 'src/Python/test')
-rw-r--r-- | src/Python/test/create_phantom_projections.py | 49 | ||||
-rw-r--r-- | src/Python/test/test_reconstructor-os_phantom.py | 480 |
2 files changed, 529 insertions, 0 deletions
diff --git a/src/Python/test/create_phantom_projections.py b/src/Python/test/create_phantom_projections.py new file mode 100644 index 0000000..20a9278 --- /dev/null +++ b/src/Python/test/create_phantom_projections.py @@ -0,0 +1,49 @@ +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel +import h5py +import numpy +import matplotlib.pyplot as plt + +nx = h5py.File('phant3D_256.h5', "r") +phantom = numpy.asarray(nx.get('/dataset1')) +pX,pY,pZ = numpy.shape(phantom) + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nxa = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nxa['/'].keys()] +print (entries) + +angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32") + + +device = AstraDevice( + DeviceModel.DeviceType.PARALLEL3D.value, + [ pX , pY , 1., 1., angles_rad], + [ pX, pY, pZ ] ) + + +proj = device.doForwardProject(phantom) +stack = [proj[:,i,:] for i in range(len(angles_rad))] +stack = numpy.asarray(stack) + + +fig = plt.figure() +a=fig.add_subplot(1,2,1) +a.set_title('proj') +imgplot = plt.imshow(proj[:,100,:]) +a=fig.add_subplot(1,2,2) +a.set_title('stack') +imgplot = plt.imshow(stack[100]) +plt.show() + +pf = h5py.File("phantom3D256_projections.h5" , "w") +pf.create_dataset("/projections", data=stack) +pf.create_dataset("/sinogram", data=proj) +pf.create_dataset("/angles", data=angles_rad) +pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ])) +pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ])) +pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.])) +pf.flush() +pf.close() diff --git a/src/Python/test/test_reconstructor-os_phantom.py b/src/Python/test/test_reconstructor-os_phantom.py new file mode 100644 index 0000000..01f1354 --- /dev/null +++ b/src/Python/test/test_reconstructor-os_phantom.py @@ -0,0 +1,480 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt +from ccpi.imaging.Regularizer import Regularizer +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel + +#from ccpi.viewer.CILViewer2D import * + + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +projections = numpy.asarray(nx.get('/projections'), dtype="float32") +#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32") +angSize = numpy.size(angles_rad) +image_size_x, image_size_y, image_size_z = \ + numpy.asarray(nx.get('/reconstruction_volume'), dtype=int) +det_col_count, det_row_count = \ + numpy.asarray(nx.get('/camera/size')) +#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] +detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int) + +Z_slices = 20 +#det_row_count = image_size_y +# next definition is just for consistency of naming +#det_col_count = image_size_x + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +##image_size_x = recon_size +##image_size_y = recon_size +##image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant +astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [proj_geom['DetectorRowCount'] , + proj_geom['DetectorColCount'] , + proj_geom['DetectorSpacingX'] , + proj_geom['DetectorSpacingY'] , + proj_geom['ProjectionAngles'] + ], + [ + vol_geom['GridColCount'], + vol_geom['GridRowCount'], + vol_geom['GridSliceCount'] ] ) +## create the sinogram +Sino3D = numpy.transpose(projections, axes=[1,0,2]) + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + #weights=Weights3D, + device=astradevice) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 4) +#fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) +#fistaRecon.setParameter(ring_lambda_R_L1 = 0) +subsets = 8 +fistaRecon.setParameter(subsets=subsets) + + +#reg = Regularizer(Regularizer.Algorithm.FGP_TV) +#reg.setParameter(regularization_parameter=0.005, +# number_of_iterations=50) +reg = Regularizer(Regularizer.Algorithm.FGP_TV) +reg.setParameter(regularization_parameter=5e6, + tolerance_constant=0.0001, + number_of_iterations=50) + +#fistaRecon.setParameter(regularizer=reg) +#lc = fistaRecon.getParameter('Lipschitz_constant') +#reg.setParameter(regularization_parameter=5e6/lc) + +## Ordered subset +if True: + #subsets = 8 + fistaRecon.setParameter(subsets=subsets) + fistaRecon.createOrderedSubsets() +else: + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if True: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if True: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)), + dtype=numpy.float) * 0.001 + X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)), + dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ, weights , alpha_ring = fistaRecon.getParameter( + ['projector_geometry' , 'output_geometry', + 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha']) + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + ## additional for + proj_geomSUB = proj_geom.copy() + fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram'])) + residual2 = fistaRecon.residual2 + sino_updt_FULL = fistaRecon.residual.copy() + r_x = fistaRecon.r.copy() + + results = [] + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): +## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required +## % one solution is to work with a full sinogram at times +## if ((i >= 3) && (lambdaR_L1 > 0)) +## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); +## astra_mex_data3d('delete', sino_id2); +## end + # With OS approach it becomes trickier to correlate independent subsets, + # hence additional work is required one solution is to work with a full + # sinogram at times + + + #t_old = t + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + r_old = fistaRecon.r.copy() + + if (i > 1 and lambdaR_L1 > 0) : + for kkk in range(anglesNumb): + + residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt_FULL[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + #r_old = fistaRecon.r.copy() + vec = fistaRecon.residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:] # 1 or 0? + r_x = fistaRecon.r_x + # update ring variable + fistaRecon.r = (r_x - (1./L_const) * vec) + + # subset loop + counterInd = 1 + geometry_type = fistaRecon.getParameter('projector_geometry')['type'] + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + +## if geometry_type == 'parallel' or \ +## geometry_type == 'fanflat' or \ +## geometry_type == 'fanflat_vec' : +## +## for kkk in range(SlicesZ): +## sino_id, sinoT[kkk] = \ +## astra.creators.create_sino3d_gpu( +## X_t[kkk:kkk+1], proj_geomSUB, vol_geom) +## sino_updt_Sub[kkk] = sinoT.T.copy() +## +## else: +## sino_id, sino_updt_Sub = \ +## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom) +## +## astra.matlab.data3d('delete', sino_id) + + for ss in range(fistaRecon.getParameter('subsets')): + print ("Subset {0}".format(ss)) + X_old = X.copy() + t_old = t + print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t)) + + # the number of projections per subset + numProjSub = fistaRecon.getParameter('os_bins')[ss] + CurrSubIndices = fistaRecon.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub] + shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) + shape[1] = numProjSub + sino_updt_Sub = numpy.zeros(shape) + + #print ("Len CurrSubIndices {0}".format(numProjSub)) + mask = numpy.zeros(numpy.shape(angles), dtype=bool) + cc = 0 + for j in range(len(CurrSubIndices)): + mask[int(CurrSubIndices[j])] = True + + ## this is a reduced device + rdev = fistaRecon.getParameter('device_model')\ + .createReducedDevice(proj_par={'angles' : angles[mask]}, + vol_par={}) + proj_geomSUB['ProjectionAngles'] = angles[mask] + + + + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + + for kkk in range(SlicesZ): + sino_id, sinoT = astra.creators.create_sino3d_gpu ( + X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) + sino_updt_Sub[kkk] = sinoT.T.copy() + astra.matlab.data3d('delete', sino_id) + else: + # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8) + sino_id, sino_updt_Sub = \ + astra.creators.create_sino3d_gpu (X_t, + proj_geomSUB, + vol_geom) + + astra.matlab.data3d('delete', sino_id) + + + + + ## RING REMOVAL + residual = fistaRecon.residual + + + if lambdaR_L1 > 0 : + print ("ring removal") + residualSub = numpy.zeros(shape) + ## for a chosen subset + ## for kkk = 1:numProjSub + ## indC = CurrSubIndeces(kkk); + ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram + ## end + for kkk in range(numProjSub): + #print ("ring removal indC ... {0}".format(kkk)) + indC = int(CurrSubIndices[kkk]) + residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ + (sino_updt_Sub[:,kkk,:].squeeze() - \ + sino[:,indC,:].squeeze() - alpha_ring * r_x) + # filling the full sinogram + sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() + + else: + #PWLS model + # I guess we need to use mask here instead + residualSub = weights[:,CurrSubIndices,:] * \ + ( sino_updt_Sub - \ + sino[:,CurrSubIndices,:].squeeze() ) + # it seems that in the original code the following like is not + # calculated in the case of ring removal + objective[i] = 0.5 * numpy.linalg.norm(residualSub) + + #backprojection + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + # if geometry is 2D use slice-by-slice projection-backprojection + # routine + x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residualSub[kkk:kkk+1], + proj_geomSUB, vol_geom) + astra.matlab.data3d('delete', x_id) + + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residualSub, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', x_id) + + X = X_t - (1/L_const) * x_temp + + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("regularizer") + reg = fistaRecon.getParameter('regularizer') + + if reg is not None: + X = reg(input=X, + output_all=False) + + t = (1 + numpy.sqrt(1 + 4 * t **2))/2 + X_t = X + (((t_old -1)/t) * (X-X_old)) + counterInd = counterInd + numProjSub - 1 + if i == 1: + r_old = fistaRecon.r.copy() + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + # updating r + r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old) + + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + + results.append(X[10]) + numpy.save("X_out_os.npy", X) + +else: + + + + astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [proj_geom['DetectorRowCount'] , + proj_geom['DetectorColCount'] , + proj_geom['DetectorSpacingX'] , + proj_geom['DetectorSpacingY'] , + proj_geom['ProjectionAngles'] + ], + [ + vol_geom['GridColCount'], + vol_geom['GridRowCount'], + vol_geom['GridSliceCount'] ] ) + regul = Regularizer(Regularizer.Algorithm.FGP_TV) + regul.setParameter(regularization_parameter=5e6, + number_of_iterations=50, + tolerance_constant=1e-4, + TV_penalty=Regularizer.TotalVariationPenalty.isotropic) + + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D, + device=astradevice, + #regularizer = regul, + subsets=8) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 1) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + #fistaRecon.setParameter(subsets=8) + + #lc = fistaRecon.getParameter('Lipschitz_constant') + #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc) + + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) + + +# plot +fig = plt.figure() +cols = 3 + +## add the difference +rd = [] +for i in range(1,len(results)): + rd.append(results[i-1]) + rd.append(results[i]) + rd.append(results[i] - results[i-1]) + +rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \ + (len (rd)) +for i in range(len (results)): + a=fig.add_subplot(rows,cols,i+1) + imgplot = plt.imshow(results[i], vmin=0, vmax=1) + a.text(0.05, 0.95, "iteration {0}".format(i), + verticalalignment='top') +## i = i + 1 +## a=fig.add_subplot(rows,cols,i+1) +## imgplot = plt.imshow(results[i], vmin=0, vmax=10) +## a.text(0.05, 0.95, "iteration {0}".format(i), +## verticalalignment='top') + +## a=fig.add_subplot(rows,cols,i+2) +## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10) +## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1), +## verticalalignment='top') + + + +plt.show() |