diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-04-10 22:39:11 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-04-10 22:39:11 +0100 |
commit | 2d436f37be6029d57d7f876d4c7c378ee712a11e (patch) | |
tree | 6bec355d839c5a1598af877e91c250a25ca83196 /src/Python | |
parent | d6ee5585e696f855d1c687d34efa04328729e94c (diff) | |
download | regularization-2d436f37be6029d57d7f876d4c7c378ee712a11e.tar.gz regularization-2d436f37be6029d57d7f876d4c7c378ee712a11e.tar.bz2 regularization-2d436f37be6029d57d7f876d4c7c378ee712a11e.tar.xz regularization-2d436f37be6029d57d7f876d4c7c378ee712a11e.zip |
progress with bresenham
Diffstat (limited to 'src/Python')
-rw-r--r-- | src/Python/ccpi/filters/regularisers.py | 4 | ||||
-rw-r--r-- | src/Python/src/cpu_regularisers.pyx | 10 |
2 files changed, 10 insertions, 4 deletions
diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py index 1e427bf..00afcc2 100644 --- a/src/Python/ccpi/filters/regularisers.py +++ b/src/Python/ccpi/filters/regularisers.py @@ -127,10 +127,11 @@ def NDF(inputData, regularisation_parameter, edge_parameter, iterations, raise ValueError ('GPU is not available') raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) -def NDF_MASK(inputData, diffuswindow, regularisation_parameter, edge_parameter, iterations, +def NDF_MASK(inputData, maskdata, diffuswindow, regularisation_parameter, edge_parameter, iterations, time_marching_parameter, penalty_type, tolerance_param, device='cpu'): if device == 'cpu': return NDF_MASK_CPU(inputData, + maskdata, diffuswindow, regularisation_parameter, edge_parameter, @@ -140,6 +141,7 @@ def NDF_MASK(inputData, diffuswindow, regularisation_parameter, edge_parameter, tolerance_param) elif device == 'gpu' and gpu_enabled: return NDF_MASK_CPU(inputData, + maskdata, diffuswindow, regularisation_parameter, edge_parameter, diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx index 305ee1f..ca402c1 100644 --- a/src/Python/src/cpu_regularisers.pyx +++ b/src/Python/src/cpu_regularisers.pyx @@ -24,7 +24,7 @@ cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector, cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float TGV_main(float *Input, float *Output, float *infovector, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, float epsil, int dimX, int dimY, int dimZ); cdef extern float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); -cdef extern float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, float *Output, float *infovector, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); +cdef extern float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, unsigned char *MASK_upd, float *Output, float *infovector, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int dimX, int dimY, int dimZ); cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); @@ -403,18 +403,22 @@ def NDF_MASK_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] + + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] mask_upd = \ + np.zeros([dims[0],dims[1]], dtype='uint8') cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ np.zeros([2], dtype='float32') + # Run constrained nonlinear diffusion iterations for 2D data - DiffusionMASK_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], &infovec[0], + DiffusionMASK_CPU_main(&inputData[0,0], &maskData[0,0], &mask_upd[0,0], &outputData[0,0], &infovec[0], diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param, dims[1], dims[0], 1) - return (outputData,infovec) + return (mask_upd,outputData,infovec) #****************************************************************# #*************Anisotropic Fourth-Order diffusion*****************# |