diff options
author | dkazanc <dkazanc@hotmail.com> | 2019-04-15 14:46:28 +0100 |
---|---|---|
committer | dkazanc <dkazanc@hotmail.com> | 2019-04-15 14:46:28 +0100 |
commit | 7c79ab71d9d9613e03e9c822b9c8dd4de98d868d (patch) | |
tree | e24e3c69f4f901442a472c793f2e537e34b805e4 /src/Python | |
parent | 56a37d28b01078e43e742c47bba627e1a1a3ce86 (diff) | |
download | regularization-7c79ab71d9d9613e03e9c822b9c8dd4de98d868d.tar.gz regularization-7c79ab71d9d9613e03e9c822b9c8dd4de98d868d.tar.bz2 regularization-7c79ab71d9d9613e03e9c822b9c8dd4de98d868d.tar.xz regularization-7c79ab71d9d9613e03e9c822b9c8dd4de98d868d.zip |
created separate module for mask processing
Diffstat (limited to 'src/Python')
-rw-r--r-- | src/Python/ccpi/filters/regularisers.py | 45 | ||||
-rw-r--r-- | src/Python/src/cpu_regularisers.pyx | 76 |
2 files changed, 46 insertions, 75 deletions
diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py index 610907d..2fee8b3 100644 --- a/src/Python/ccpi/filters/regularisers.py +++ b/src/Python/ccpi/filters/regularisers.py @@ -2,7 +2,7 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_MASK_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU +from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU, MASK_CORR_CPU try: from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU gpu_enabled = True @@ -127,37 +127,6 @@ def NDF(inputData, regularisation_parameter, edge_parameter, iterations, raise ValueError ('GPU is not available') raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) -def NDF_MASK(inputData, maskdata, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterations, - time_marching_parameter, penalty_type, tolerance_param, device='cpu'): - if device == 'cpu': - return NDF_MASK_CPU(inputData, - maskdata, - select_classes, - total_classesNum, - diffuswindow, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type, - tolerance_param) - elif device == 'gpu' and gpu_enabled: - return NDF_MASK_CPU(inputData, - maskdata, - select_classes, - total_classesNum, - diffuswindow, - regularisation_parameter, - edge_parameter, - iterations, - time_marching_parameter, - penalty_type, - tolerance_param) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations, time_marching_parameter, tolerance_param, device='cpu'): if device == 'cpu': @@ -243,3 +212,15 @@ def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, itera def NVM_INP(inputData, maskData, SW_increment, iterations): return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations) + +def MASK_CORR(maskdata, select_classes, total_classesNum, CorrectionWindow, device='cpu'): + if device == 'cpu': + return MASK_CORR_CPU(maskdata, select_classes, total_classesNum, CorrectionWindow) + elif device == 'gpu' and gpu_enabled: + return MASK_CORR_CPU(maskdata, select_classes, total_classesNum, CorrectionWindow) + else: + if not gpu_enabled and device == 'gpu': + raise ValueError ('GPU is not available') + raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ + .format(device)) + diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx index 78c46e2..a63ecfa 100644 --- a/src/Python/src/cpu_regularisers.pyx +++ b/src/Python/src/cpu_regularisers.pyx @@ -24,7 +24,7 @@ cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector, cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float TGV_main(float *Input, float *Output, float *infovector, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, float epsil, int dimX, int dimY, int dimZ); cdef extern float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); -cdef extern float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *SelClassesList, int SelClassesList_length, float *Output, float *infovector, int classesNumb, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); +cdef extern float Mask_merge_main(unsigned char *MASK, unsigned char *MASK_upd, unsigned char *CORRECTEDRegions, unsigned char *SelClassesList, int SelClassesList_length, int classesNumb, int CorrectionWindow, int dimX, int dimY, int dimZ); cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int dimX, int dimY, int dimZ); cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); @@ -382,48 +382,6 @@ def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, return (outputData,infovec) #****************************************************************# -#********Constrained Nonlinear(Isotropic) Diffusion**************# -#****************************************************************# -def NDF_MASK_CPU(inputData, maskData, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type, tolerance_param): - if inputData.ndim == 2: - return NDF_MASK_2D(inputData, maskData, select_classes, total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param) - elif inputData.ndim == 3: - return 0 - -def NDF_MASK_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, - np.ndarray[np.uint8_t, ndim=1, mode="c"] select_classes, - int total_classesNum, - int diffuswindow, - float regularisation_parameter, - float edge_parameter, - int iterationsNumb, - float time_marching_parameter, - int penalty_type, - float tolerance_param): - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - select_classes_length = select_classes.shape[0] - - cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] mask_upd = \ - np.zeros([dims[0],dims[1]], dtype='uint8') - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ - np.zeros([2], dtype='float32') - - - # Run constrained nonlinear diffusion iterations for 2D data - DiffusionMASK_CPU_main(&inputData[0,0], &maskData[0,0], &mask_upd[0,0], &select_classes[0], select_classes_length, &outputData[0,0], &infovec[0], - total_classesNum, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, - time_marching_parameter, penalty_type, - tolerance_param, - dims[1], dims[0], 1) - return (mask_upd,outputData,infovec) - -#****************************************************************# #*************Anisotropic Fourth-Order diffusion*****************# #****************************************************************# def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter,tolerance_param): @@ -736,6 +694,38 @@ def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, return (outputData, maskData_upd) +############################################################################## +#****************************************************************# +#********Mask (segmented image) correction module **************# +#****************************************************************# +def MASK_CORR_CPU(maskData, select_classes, total_classesNum, CorrectionWindow): + if maskData.ndim == 2: + return MASK_CORR_CPU_2D(maskData, select_classes, total_classesNum, CorrectionWindow) + elif maskData.ndim == 3: + return 0 + +def MASK_CORR_CPU_2D(np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, + np.ndarray[np.uint8_t, ndim=1, mode="c"] select_classes, + int total_classesNum, + int CorrectionWindow): + + cdef long dims[2] + dims[0] = maskData.shape[0] + dims[1] = maskData.shape[1] + + select_classes_length = select_classes.shape[0] + + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] mask_upd = \ + np.zeros([dims[0],dims[1]], dtype='uint8') + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] corr_regions = \ + np.zeros([dims[0],dims[1]], dtype='uint8') + + # Run the function to process given MASK + Mask_merge_main(&maskData[0,0], &mask_upd[0,0], &corr_regions[0,0], &select_classes[0], select_classes_length, + total_classesNum, CorrectionWindow, dims[1], dims[0], 1) + return (mask_upd,corr_regions) + +############################################################################## #****************************************************************# #***************Calculation of TV-energy functional**************# |