summaryrefslogtreecommitdiffstats
path: root/src/Python
diff options
context:
space:
mode:
authordkazanc <dkazanc@hotmail.com>2019-04-09 16:44:39 +0100
committerdkazanc <dkazanc@hotmail.com>2019-04-09 16:44:39 +0100
commitd6ee5585e696f855d1c687d34efa04328729e94c (patch)
tree5ff04822b93d69a37a9cfce8a2e473ebc9d0ef18 /src/Python
parentd882861f8cfc59ffe70aa2f286dda83b348d7a70 (diff)
downloadregularization-d6ee5585e696f855d1c687d34efa04328729e94c.tar.gz
regularization-d6ee5585e696f855d1c687d34efa04328729e94c.tar.bz2
regularization-d6ee5585e696f855d1c687d34efa04328729e94c.tar.xz
regularization-d6ee5585e696f855d1c687d34efa04328729e94c.zip
2D CPU version for constrained diffusion
Diffstat (limited to 'src/Python')
-rw-r--r--src/Python/ccpi/filters/regularisers.py27
-rw-r--r--src/Python/src/cpu_regularisers.pyx37
2 files changed, 63 insertions, 1 deletions
diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py
index 398e11c..1e427bf 100644
--- a/src/Python/ccpi/filters/regularisers.py
+++ b/src/Python/ccpi/filters/regularisers.py
@@ -2,7 +2,7 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU
+from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_MASK_CPU, Diff4th_CPU, TGV_CPU, LLT_ROF_CPU, PATCHSEL_CPU, NLTV_CPU
try:
from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU, Diff4th_GPU, TGV_GPU, LLT_ROF_GPU, PATCHSEL_GPU
gpu_enabled = True
@@ -127,6 +127,31 @@ def NDF(inputData, regularisation_parameter, edge_parameter, iterations,
raise ValueError ('GPU is not available')
raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
.format(device))
+def NDF_MASK(inputData, diffuswindow, regularisation_parameter, edge_parameter, iterations,
+ time_marching_parameter, penalty_type, tolerance_param, device='cpu'):
+ if device == 'cpu':
+ return NDF_MASK_CPU(inputData,
+ diffuswindow,
+ regularisation_parameter,
+ edge_parameter,
+ iterations,
+ time_marching_parameter,
+ penalty_type,
+ tolerance_param)
+ elif device == 'gpu' and gpu_enabled:
+ return NDF_MASK_CPU(inputData,
+ diffuswindow,
+ regularisation_parameter,
+ edge_parameter,
+ iterations,
+ time_marching_parameter,
+ penalty_type,
+ tolerance_param)
+ else:
+ if not gpu_enabled and device == 'gpu':
+ raise ValueError ('GPU is not available')
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
def Diff4th(inputData, regularisation_parameter, edge_parameter, iterations,
time_marching_parameter, tolerance_param, device='cpu'):
if device == 'cpu':
diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx
index add641b..305ee1f 100644
--- a/src/Python/src/cpu_regularisers.pyx
+++ b/src/Python/src/cpu_regularisers.pyx
@@ -24,6 +24,7 @@ cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector,
cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ);
cdef extern float TGV_main(float *Input, float *Output, float *infovector, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, float epsil, int dimX, int dimY, int dimZ);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ);
+cdef extern float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, float *Output, float *infovector, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ);
cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int dimX, int dimY, int dimZ);
cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
@@ -379,6 +380,42 @@ def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
tolerance_param,
dims[2], dims[1], dims[0])
return (outputData,infovec)
+
+#****************************************************************#
+#********Constrained Nonlinear(Isotropic) Diffusion**************#
+#****************************************************************#
+def NDF_MASK_CPU(inputData, maskData, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type, tolerance_param):
+ if inputData.ndim == 2:
+ return NDF_MASK_2D(inputData, maskData, diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param)
+ elif inputData.ndim == 3:
+ return 0
+
+def NDF_MASK_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
+ int diffuswindow,
+ float regularisation_parameter,
+ float edge_parameter,
+ int iterationsNumb,
+ float time_marching_parameter,
+ int penalty_type,
+ float tolerance_param):
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+ cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
+ np.zeros([2], dtype='float32')
+
+ # Run constrained nonlinear diffusion iterations for 2D data
+ DiffusionMASK_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], &infovec[0],
+ diffuswindow, regularisation_parameter, edge_parameter, iterationsNumb,
+ time_marching_parameter, penalty_type,
+ tolerance_param,
+ dims[1], dims[0], 1)
+ return (outputData,infovec)
+
#****************************************************************#
#*************Anisotropic Fourth-Order diffusion*****************#
#****************************************************************#