summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2017-10-19 12:40:13 +0100
committerEdoardo Pasca <edo.paskino@gmail.com>2017-10-19 12:40:13 +0100
commit796bf20c7dc6ceadd8922a73ca1d7bdcdce045e0 (patch)
tree88012fd36e66a10d74c8bd7393dbd21c2c1c4638 /src
parentdd6e415991f312bf54cdd69d1dd09fb8bcdebd2a (diff)
parentc7f0f2268f94b62d2e2deee736939ad75d3dc1b1 (diff)
downloadregularization-796bf20c7dc6ceadd8922a73ca1d7bdcdce045e0.tar.gz
regularization-796bf20c7dc6ceadd8922a73ca1d7bdcdce045e0.tar.bz2
regularization-796bf20c7dc6ceadd8922a73ca1d7bdcdce045e0.tar.xz
regularization-796bf20c7dc6ceadd8922a73ca1d7bdcdce045e0.zip
Merge branch 'pythonize' of https://github.com/vais-ral/CCPi-FISTA_Reconstruction into pythonize
Diffstat (limited to 'src')
-rw-r--r--src/Python/ccpi/fista/FISTAReconstructor.py182
-rw-r--r--src/Python/test_reconstructor-os.py379
-rw-r--r--src/Python/test_reconstructor.py122
3 files changed, 594 insertions, 89 deletions
diff --git a/src/Python/ccpi/fista/FISTAReconstructor.py b/src/Python/ccpi/fista/FISTAReconstructor.py
index 87dd2c0..fda9cf0 100644
--- a/src/Python/ccpi/fista/FISTAReconstructor.py
+++ b/src/Python/ccpi/fista/FISTAReconstructor.py
@@ -85,6 +85,7 @@ class FISTAReconstructor():
self.pars['detectors'] = detectors
self.pars['number_of_angles'] = nangles
self.pars['SlicesZ'] = sliceZ
+ self.pars['output_volume'] = None
print (self.pars)
# handle optional input parameters (at instantiation)
@@ -109,8 +110,10 @@ class FISTAReconstructor():
'ring_lambda_R_L1',
'ring_alpha',
'subsets',
- 'use_studentt_fidelity',
- 'studentt')
+ 'output_volume',
+ 'os_subsets',
+ 'os_indices',
+ 'os_bins')
self.acceptedInputKeywords = list(kw)
# handle keyworded parameters
@@ -141,10 +144,12 @@ class FISTAReconstructor():
if not 'region_of_interest'in kwargs.keys() :
if self.pars['ideal_image'] == None:
- pass
+ self.pars['region_of_interest'] = None
else:
- self.pars['region_of_interest'] = numpy.nonzero(
- self.pars['ideal_image']>0.0)
+ ## nonzero if the image is larger than m
+ fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1)
+
+ self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0)
# the regularizer must be a correctly instantiated object
if not 'regularizer' in kwargs.keys() :
@@ -165,14 +170,7 @@ class FISTAReconstructor():
if not 'initialize' in kwargs.keys():
self.pars['initialize'] = False
- if not 'use_studentt_fidelity' in kwargs.keys():
- self.setParameter(studentt=False)
- else:
- print ("studentt {0}".format(kwargs['use_studentt_fidelity']))
- if kwargs['use_studentt_fidelity']:
- raise Exception('Not implemented')
-
- self.setParameter(studentt=kwargs['use_studentt_fidelity'])
+
def setParameter(self, **kwargs):
@@ -183,8 +181,6 @@ class FISTAReconstructor():
'''
for key , value in kwargs.items():
if key in self.acceptedInputKeywords:
- if key == 'use_studentt_fidelity':
- raise Exception('use_studentt_fidelity Not implemented')
self.pars[key] = value
else:
raise Exception('Wrong parameter {0} for '.format(key) +
@@ -389,11 +385,15 @@ class FISTAReconstructor():
counter = counter + binsDiscr[jj] - 1
-
- return IndicesReorg
+ # store the OS in parameters
+ self.setParameter(os_subsets=subsets,
+ os_bins=binsDiscr,
+ os_indices=IndicesReorg)
def prepareForIteration(self):
+ print ("FISTA Reconstructor: prepare for iteration")
+
self.residual_error = numpy.zeros((self.pars['number_of_iterations']))
self.objective = numpy.zeros((self.pars['number_of_iterations']))
@@ -408,19 +408,17 @@ class FISTAReconstructor():
if self.getParameter('Lipschitz_constant') is None:
self.pars['Lipschitz_constant'] = \
self.calculateLipschitzConstantWithPowerMethod()
+ # errors vector (if the ground truth is given)
+ self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations')));
+ # objective function values vector
+ self.objective = numpy.zeros((self.getParameter('number_of_iterations')));
# prepareForIteration
def iterate(self, Xin=None):
- # convenience variable storage
- proj_geom , vol_geom, sino , \
- SlicesZ = self.getParameter([ 'projector_geometry' ,
- 'output_geometry',
- 'input_sinogram',
- 'SlicesZ'])
-
- t = 1
+ print ("FISTA Reconstructor: iterate")
+
if Xin is None:
if self.getParameter('initialize'):
X = self.initialize()
@@ -430,15 +428,25 @@ class FISTAReconstructor():
else:
# copy by reference
X = Xin
-
+ # store the output volume in the parameters
+ self.setParameter(output_volume=X)
X_t = X.copy()
+ # convenience variable storage
+ proj_geom , vol_geom, sino , \
+ SlicesZ = self.getParameter([ 'projector_geometry' ,
+ 'output_geometry',
+ 'input_sinogram',
+ 'SlicesZ' ])
+
+ t = 1
for i in range(self.getParameter('number_of_iterations')):
X_old = X.copy()
t_old = t
r_old = self.r.copy()
if self.getParameter('projector_geometry')['type'] == 'parallel' or \
- self.getParameter('projector_geometry')['type'] == 'parallel3d':
+ self.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
# if the geometry is parallel use slice-by-slice
# projection-backprojection routine
#sino_updt = zeros(size(sino),'single');
@@ -446,10 +454,9 @@ class FISTAReconstructor():
proj_geomT['DetectorRowCount'] = 1
vol_geomT = vol_geom.copy()
vol_geomT['GridSliceCount'] = 1;
- sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+ self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
for kkk in range(SlicesZ):
- print (kkk)
- sino_id, sino_updt[kkk] = \
+ sino_id, self.sino_updt[kkk] = \
astra.creators.create_sino3d_gpu(
X_t[kkk:kkk+1], proj_geomT, vol_geomT)
astra.matlab.data3d('delete', sino_id)
@@ -457,11 +464,122 @@ class FISTAReconstructor():
# for divergent 3D geometry (watch the GPU memory overflow in
# ASTRA versions < 1.8)
#[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- sino_id, sino_updt = astra.matlab.create_sino3d_gpu(
+ sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
X_t, proj_geom, vol_geom)
## RING REMOVAL
-
+ self.ringRemoval(i)
+ ## Projection/Backprojection Routine
+ self.projectionBackprojection(X, X_t)
+ astra.matlab.data3d('delete', sino_id)
## REGULARIZATION
+ X = self.regularize(X)
+ ## Update Loop
+ X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+ self.setParameter(output_volume=X)
+ return X
+ ## iterate
+
+ def ringRemoval(self, i):
+ print ("FISTA Reconstructor: ring removal")
+ residual = self.residual
+ lambdaR_L1 , alpha_ring , weights , L_const , sino= \
+ self.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant',
+ 'input_sinogram'])
+ r_x = self.r_x
+ sino_updt = self.sino_updt
+
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(self.getParameter('input_sinogram'))
+ if lambdaR_L1 > 0 :
+ for kkk in range(anglesNumb):
+
+ residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ vec = residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:].squeeze()
+ self.r = (r_x - (1./L_const) * vec).copy()
+ self.objective[i] = (0.5 * (residual ** 2).sum())
+
+ def projectionBackprojection(self, X, X_t):
+ print ("FISTA Reconstructor: projection-backprojection routine")
+
+ # a few useful variables
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(self.getParameter('input_sinogram'))
+ residual = self.residual
+ proj_geom , vol_geom , L_const = \
+ self.getParameter(['projector_geometry' ,
+ 'output_geometry',
+ 'Lipschitz_constant'])
+
+
+ if self.getParameter('projector_geometry')['type'] == 'parallel' or \
+ self.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+ # if the geometry is parallel use slice-by-slice
+ # projection-backprojection routine
+ #sino_updt = zeros(size(sino),'single');
+ proj_geomT = proj_geom.copy()
+ proj_geomT['DetectorRowCount'] = 1
+ vol_geomT = vol_geom.copy()
+ vol_geomT['GridSliceCount'] = 1;
+ x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residual[kkk:kkk+1],
+ proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residual, proj_geom, vol_geom)
+
+ X = X_t - (1/L_const) * x_temp
+ #astra.matlab.data3d('delete', sino_id)
+ astra.matlab.data3d('delete', x_id)
+
+ def regularize(self, X):
+ print ("FISTA Reconstructor: regularize")
+
+ regularizer = self.getParameter('regularizer')
+ if regularizer is not None:
+ return regularizer(input=X)
+ else:
+ return X
+
+ def updateLoop(self, i, X, X_old, r_old, t, t_old):
+ print ("FISTA Reconstructor: update loop")
+ lambdaR_L1 = self.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ self.r = numpy.max(
+ numpy.abs(self.r) - lambdaR_L1 , 0) * \
+ numpy.sign(self.r)
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+
+ if lambdaR_L1 > 0:
+ self.r_x = self.r + \
+ (((t_old-1)/t) * (self.r - r_old))
+
+ if self.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, self.objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], self.objective[i]))
+ return (X , X_t, t)
diff --git a/src/Python/test_reconstructor-os.py b/src/Python/test_reconstructor-os.py
new file mode 100644
index 0000000..6f3721f
--- /dev/null
+++ b/src/Python/test_reconstructor-os.py
@@ -0,0 +1,379 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.fista.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
+Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+Z_slices = 20
+det_row_count = Z_slices
+# next definition is just for consistency of naming
+det_col_count = size_det
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+image_size_x = recon_size
+image_size_y = recon_size
+image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+ image_size_y,
+ image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+
+fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ weights=Weights3D)
+
+print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+fistaRecon.setParameter(number_of_iterations = 12)
+fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+fistaRecon.setParameter(ring_alpha = 21)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+
+## Ordered subset
+if True:
+ subsets = 16
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)))
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+
+if True:
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+
+
+ print("initializing ...")
+ if False:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
+ proj_geom , vol_geom, sino , \
+ SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
+ 'output_geometry',
+ 'input_sinogram',
+ 'SlicesZ'])
+
+ #fistaRecon.setParameter(number_of_iterations = 3)
+ iterFISTA = fistaRecon.getParameter('number_of_iterations')
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ objective = numpy.zeros((iterFISTA));
+
+
+ t = 1
+
+ ## additional for
+ proj_geomSUB = proj_geom.copy()
+ fistaRecon.residual2 = numpy.zeros(numpy.shape(self.pars['input_sinogram']))
+ print ("starting iterations")
+## % Outer FISTA iterations loop
+ for i in range(fistaRecon.getParameter('number_of_iterations')):
+## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
+## % one solution is to work with a full sinogram at times
+## if ((i >= 3) && (lambdaR_L1 > 0))
+## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
+## astra_mex_data3d('delete', sino_id2);
+## end
+ # With OS approach it becomes trickier to correlate independent subsets,
+ # hence additional work is required one solution is to work with a full
+ # sinogram at times
+
+ ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+ if (lambdaR_L1 > 0) :
+ sino_id2, sino_updt2 = astra.creators.create_sino3d_gpu(
+ X, proj_geom, vol_geom)
+ astra.matlab.data3d('delete', sino_id2)
+
+ # subset loop
+ counterInd = 1
+ for ss in range(fistaRecon.getParameter('subsets')):
+ print ("Subset {0}".format(ss))
+ X_old = X.copy()
+ t_old = t
+ r_old = fistaRecon.r.copy()
+
+ # the number of projections per subset
+ numProjSub = fistaRecon.getParameter('os_bins')[ss]
+ CurrSubIndices = fistaRecon.getParameter('os_indices')\
+ [counterInd:counterInd+numProjSub-1]
+ proj_geomSUB['ProjectionAngles'] = angles[CurrSubIndeces]
+
+## if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+## fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
+## fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
+## # if the geometry is parallel use slice-by-slice
+## # projection-backprojection routine
+## #sino_updt = zeros(size(sino),'single');
+## proj_geomT = proj_geom.copy()
+## proj_geomT['DetectorRowCount'] = 1
+## vol_geomT = vol_geom.copy()
+## vol_geomT['GridSliceCount'] = 1;
+## sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+## for kkk in range(SlicesZ):
+## sino_id, sino_updt[kkk] = \
+## astra.creators.create_sino3d_gpu(
+## X_t[kkk:kkk+1], proj_geom, vol_geom)
+## astra.matlab.data3d('delete', sino_id)
+## else:
+## # for divergent 3D geometry (watch the GPU memory overflow in
+## # ASTRA versions < 1.8)
+## #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+## sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+## X_t, proj_geom, vol_geom)
+
+ ## RING REMOVAL
+ residual = fistaRecon.residual
+ residual2 = fistaRecon.residual2
+
+ lambdaR_L1 , alpha_ring , weights , L_const= \
+ fistaRecon.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant'])
+ r_x = fistaRecon.r_x
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(fistaRecon.getParameter('input_sinogram'))
+ if lambdaR_L1 > 0 :
+ print ("ring removal")
+## % the ring removal part (Group-Huber fidelity)
+## % first 2 iterations do additional work reconstructing whole dataset to ensure
+## % the stablility
+## if (i < 3)
+## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+## astra_mex_data3d('delete', sino_id2);
+## else
+## [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
+## end
+
+## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+ if i < 3:
+ pass
+ else:
+ sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+ X_t, proj_geomSUB, vol_geom)
+## sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+## X, proj_geom, vol_geom)
+## astra.matlab.data3d('delete', sino_id)
+
+ for kkk in range(anglesNumb):
+
+ residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt2[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
+ shape[1] = numProjSub
+ fistaRecon.residual = numpy.zeros(shape)
+ if fistaRecon.residual.__hash__() != residual.__hash__():
+ residual = fistaRecon.residual
+## for kkk = 1:numProjSub
+## indC = CurrSubIndeces(kkk);
+## if (i < 3)
+## residual(:,kkk,:) = squeeze(residual2(:,indC,:));
+## else
+## residual(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+## end
+## end
+ for kk in range(numProjSub):
+ indC = fistaRecon.getParameter('os_indices')[kkk]
+ if i < 3:
+ residual[:,kkk,:] = residual2[:,indC,:].squeeze()
+ else:
+ residual(:,kkk,:) = \
+ weights[:,indC,:].squeeze() * sino_updt[:,kkk,:].squeeze() - \
+ sino[:,indC,:].squeeze() - alpha_ring * fistaRecon.r_x
+ #squeeze(weights(:,indC,:)).* \
+ # (squeeze(sino_updt(:,kkk,:)) - \
+ #(squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+
+
+
+ vec = residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:].squeeze()
+ fistaRecon.r = (r_x - (1./L_const) * vec).copy()
+ objective[i] = (0.5 * (residual ** 2).sum())
+## % the ring removal part (Group-Huber fidelity)
+## for kkk = 1:anglesNumb
+## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*
+## (squeeze(sino_updt(:,kkk,:)) -
+## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+## end
+## vec = sum(residual,2);
+## if (SlicesZ > 1)
+## vec = squeeze(vec(:,1,:));
+## end
+## r = r_x - (1./L_const).*vec;
+## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+
+
+
+ # Projection/Backprojection Routine
+ if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+ x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+ print ("Projection/Backprojection Routine")
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residual[kkk:kkk+1],
+ proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residual, proj_geom, vol_geom)
+
+ X = X_t - (1/L_const) * x_temp
+ astra.matlab.data3d('delete', sino_id)
+ astra.matlab.data3d('delete', x_id)
+
+
+ ## REGULARIZATION
+ ## SKIPPING FOR NOW
+ ## Should be simpli
+ # regularizer = fistaRecon.getParameter('regularizer')
+ # for slices:
+ # out = regularizer(input=X)
+ print ("skipping regularizer")
+
+
+ ## FINAL
+ print ("final")
+ lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ fistaRecon.r = numpy.max(
+ numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+ numpy.sign(fistaRecon.r)
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+
+ if lambdaR_L1 > 0:
+ fistaRecon.r_x = fistaRecon.r + \
+ (((t_old-1)/t) * (fistaRecon.r - r_old))
+
+ if fistaRecon.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
+
+## if (lambdaR_L1 > 0)
+## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+## end
+##
+## t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+##
+## if (lambdaR_L1 > 0)
+## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+## end
+##
+## if (show == 1)
+## figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+## if (lambdaR_L1 > 0)
+## figure(11); plot(r); title('Rings offset vector')
+## end
+## pause(0.01);
+## end
+## if (strcmp(X_ideal, 'none' ) == 0)
+## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+## else
+## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+## end
+else:
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ weights=Weights3D)
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 12)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+ fistaRecon.prepareForIteration()
+ X = fistaRecon.iterate(numpy.load("X.npy"))
diff --git a/src/Python/test_reconstructor.py b/src/Python/test_reconstructor.py
index f8f6b3c..07668ba 100644
--- a/src/Python/test_reconstructor.py
+++ b/src/Python/test_reconstructor.py
@@ -11,10 +11,17 @@ import numpy
from ccpi.fista.FISTAReconstructor import FISTAReconstructor
import astra
+import matplotlib.pyplot as plt
-##def getEntry(nx, location):
-## for item in nx[location].keys():
-## print (item)
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
nx = h5py.File(filename, "r")
@@ -68,7 +75,6 @@ fistaRecon.setParameter(number_of_iterations = 12)
fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
fistaRecon.setParameter(ring_alpha = 21)
fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-#fistaRecon.setParameter(use_studentt_fidelity= True)
## Ordered subset
if False:
@@ -94,19 +100,34 @@ if False:
counter = counter + binsDiscr[jj] - 1
-if True:
- fistaRecon.prepareForIteration()
+if False:
print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+ print("initializing ...")
+ if False:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
proj_geom , vol_geom, sino , \
SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
'output_geometry',
'input_sinogram',
'SlicesZ'])
- fistaRecon.setParameter(number_of_iterations = 3)
+ #fistaRecon.setParameter(number_of_iterations = 3)
iterFISTA = fistaRecon.getParameter('number_of_iterations')
# errors vector (if the ground truth is given)
Resid_error = numpy.zeros((iterFISTA));
@@ -114,30 +135,18 @@ if True:
objective = numpy.zeros((iterFISTA));
- print ("line")
t = 1
- print ("line")
- if False:
- # if X doesn't exist
- #N = params.vol_geom.GridColCount
- N = vol_geom['GridColCount']
- print ("N " + str(N))
- X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
- else:
- #X = fistaRecon.initialize()
- X = numpy.load("X.npy")
-
- print (numpy.shape(X))
- X_t = X.copy()
- print ("X_t copy")
+
+ print ("starting iterations")
## % Outer FISTA iterations loop
for i in range(fistaRecon.getParameter('number_of_iterations')):
X_old = X.copy()
t_old = t
r_old = fistaRecon.r.copy()
if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'parallel3d':
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
# if the geometry is parallel use slice-by-slice
# projection-backprojection routine
#sino_updt = zeros(size(sino),'single');
@@ -147,16 +156,15 @@ if True:
vol_geomT['GridSliceCount'] = 1;
sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
for kkk in range(SlicesZ):
- print (kkk)
sino_id, sino_updt[kkk] = \
astra.creators.create_sino3d_gpu(
- X_t[kkk:kkk+1], proj_geomT, vol_geomT)
+ X_t[kkk:kkk+1], proj_geom, vol_geom)
astra.matlab.data3d('delete', sino_id)
else:
# for divergent 3D geometry (watch the GPU memory overflow in
# ASTRA versions < 1.8)
#[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- sino_id, sino_updt = astra.matlab.create_sino3d_gpu(
+ sino_id, sino_updt = astra.creators.create_sino3d_gpu(
X_t, proj_geom, vol_geom)
## RING REMOVAL
@@ -169,8 +177,9 @@ if True:
SlicesZ, anglesNumb, Detectors = \
numpy.shape(fistaRecon.getParameter('input_sinogram'))
if lambdaR_L1 > 0 :
+ print ("ring removal")
for kkk in range(anglesNumb):
- print ("angles {0}".format(kkk))
+
residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
((sino_updt[:,kkk,:]).squeeze() - \
(sino[:,kkk,:]).squeeze() -\
@@ -194,39 +203,16 @@ if True:
## r = r_x - (1./L_const).*vec;
## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
- else:
- if fistaRecon.getParameter('use_studentt_fidelity'):
- residual = weights * (sino_updt - sino)
- for kkk in range(SlicesZ):
- # reshape(residual(:,:,kkk), Detectors*anglesNumb, 1)
- # 1D
- res_vec = numpy.reshape(residual[kkk], (Detectors * anglesNumb,1))
-
-## else
-## if (studentt == 1)
-## % artifacts removal with Students t penalty
-## residual = weights.*(sino_updt - sino);
-## for kkk = 1:SlicesZ
-## res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
-## %s = 100;
-## %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
-## [ff, gr] = studentst(res_vec, 1);
-## residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
-## end
-## objective(i) = ff; % for the objective function output
-## else
-## % no ring removal (LS model)
-## residual = weights.*(sino_updt - sino);
-## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
-## end
-## end
+
# Projection/Backprojection Routine
if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'parallel3d':
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+ print ("Projection/Backprojection Routine")
for kkk in range(SlicesZ):
- print ("Projection/Backprojection Routine {0}".format( kkk ))
+
x_id, x_temp[kkk] = \
astra.creators.create_backprojection3d_gpu(
residual[kkk:kkk+1],
@@ -248,9 +234,11 @@ if True:
# regularizer = fistaRecon.getParameter('regularizer')
# for slices:
# out = regularizer(input=X)
+ print ("skipping regularizer")
## FINAL
+ print ("final")
lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
if lambdaR_L1 > 0:
fistaRecon.r = numpy.max(
@@ -263,9 +251,16 @@ if True:
fistaRecon.r_x = fistaRecon.r + \
(((t_old-1)/t) * (fistaRecon.r - r_old))
- if fistaRecon.getParameter('ideal_image') is None:
+ if fistaRecon.getParameter('region_of_interest') is None:
string = 'Iteration Number {0} | Objective {1} \n'
print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
## if (lambdaR_L1 > 0)
## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
@@ -291,3 +286,16 @@ if True:
## else
## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
## end
+else:
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ weights=Weights3D)
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 12)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+ fistaRecon.prepareForIteration()
+ X = fistaRecon.iterate(numpy.load("X.npy"))