summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--data/DendrRawData.matbin0 -> 15177638 bytes
-rw-r--r--data/sino3D_dendrites.matbin27797233 -> 0 bytes
-rw-r--r--demo/Demo2.m156
-rw-r--r--demo/DemoRD2.m130
-rw-r--r--demos/Demo1.m (renamed from demo/Demo1.m)332
-rw-r--r--demos/DemoRD1.m (renamed from demo/DemoRD1.m)65
-rw-r--r--demos/DemoRD2.m126
-rw-r--r--license.txt27
-rw-r--r--main_func/FGP_TV.c400
-rw-r--r--main_func/FISTA_REC.m291
-rw-r--r--main_func/FISTA_TV.c331
-rw-r--r--main_func/LLT_model.c2
-rw-r--r--main_func/SplitBregman_TV.c317
-rw-r--r--main_func/compile_mex.m4
-rw-r--r--main_func/studentst.m94
-rw-r--r--supp/RMSE.m12
-rw-r--r--supp/add_wedges.m7
-rw-r--r--supp/zing_rings_add.m45
18 files changed, 1155 insertions, 1184 deletions
diff --git a/data/DendrRawData.mat b/data/DendrRawData.mat
new file mode 100644
index 0000000..2de7f0c
--- /dev/null
+++ b/data/DendrRawData.mat
Binary files differ
diff --git a/data/sino3D_dendrites.mat b/data/sino3D_dendrites.mat
deleted file mode 100644
index dc1400d..0000000
--- a/data/sino3D_dendrites.mat
+++ /dev/null
Binary files differ
diff --git a/demo/Demo2.m b/demo/Demo2.m
deleted file mode 100644
index 3c1592c..0000000
--- a/demo/Demo2.m
+++ /dev/null
@@ -1,156 +0,0 @@
-% Demonstration of tomographic reconstruction from noisy and corrupted by
-% artifacts undersampled projection data using Students t penalty
-% This is the missing wedge demo, run it after DemoFISTA_StudT
-
-% see ReadMe file for instructions
-% clear all
-% close all
-
-load phantom_bone512.mat % load the phantom
-load my_red_yellowMAP.mat % load the colormap
-% load sino1.mat; % load noisy sinogram
-
-N = 512; % the size of the tomographic image NxN
-theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
-theta_rad = theta*(pi/180); % conversion to radians
-P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
-ROI = find(phantom > 0.0);
-
-add_wedges % apply the missing wedge mask
-
-%%
-fprintf('%s\n', 'Direct reconstruction using FBP...');
-FBP_1 = iradon(MW_sino_artifacts', theta, N);
-
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
-
-figure(1);
-% set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[-2 0.8]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 132; %max number of outer iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-params.weights = Dweights; % statistical weighting
-tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
-
-figure(2); clf
-%set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(3); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 200; % max number of outer iterations
-params.lambdaTV = 5.39e-05; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
-
-figure(4); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(5); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 250; % max number of outer iterations
-params.lambdaTV = 0.0019; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-
-figure(6); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(7); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 80; % max number of outer iterations
-% params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence)
-params.lambdaTV = 0.0016; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.fidelity = 'student'; % selecting students t fidelity
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
-
-figure(8);
-set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(9);
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-% print all RMSE's
-fprintf('%s\n', '--------------------------------------------');
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
-% \ No newline at end of file
diff --git a/demo/DemoRD2.m b/demo/DemoRD2.m
deleted file mode 100644
index a8ac2ca..0000000
--- a/demo/DemoRD2.m
+++ /dev/null
@@ -1,130 +0,0 @@
-% Demonstration of tomographic 3D reconstruction from X-ray synchrotron
-% dataset (dendrites) using various data fidelities
-% clear all
-% close all
-%
-% % adding paths
- addpath('data/');
- addpath('main_func/');
- addpath('supp/');
-
-load('sino3D_dendrites.mat') % load 3D normalized sinogram
-angles_rad = angles*(pi/180); % conversion to radians
-
-angSize = size(Sino3D,1); % angles dim
-size_det = size(Sino3D, 2); % detector size
-recon_size = 850; % reconstruction size
-
-FBP = iradon(Sino3D(:,:,10)', angles,recon_size);
-figure; imshow(FBP , [0, 3]); title ('FBP reconstruction');
-
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
-clear params
-params.sino = Sino3D;
-params.N = recon_size;
-params.angles = angles_rad;
-params.iterFISTA = 80;
-params.precondition = 1; % switch on preconditioning
-params.show = 0;
-params.maxvalplot = 2.5; params.slice = 10;
-
-tic; [X_fista] = FISTA_REC(params); toc;
-figure; imshow(X_fista(:,:,10) , [0, 2.5]); title ('FISTA-LS reconstruction');
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
-clear params
-params.sino = Sino3D;
-params.N = recon_size;
-params.angles = angles_rad;
-params.iterFISTA = 100;
-params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV
-params.tol = 1.0e-04;
-params.iterTV = 20;
-params.precondition = 1; % switch on preconditioning
-params.show = 0;
-params.maxvalplot = 2.5; params.slice = 10;
-
-tic; [X_fista_TV] = FISTA_REC(params); toc;
-figure; imshow(X_fista_TV(:,:,10) , [0, 2.5]); title ('FISTA-LS-TV reconstruction');
-%%
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
-clear params
-params.sino = Sino3D;
-params.N = recon_size;
-params.angles = angles_rad;
-params.iterFISTA = 100;
-params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV
-params.tol = 1.0e-04;
-params.iterTV = 20;
-params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter
-params.alpha_ring = 20; % to boost ring removal procedure
-params.precondition = 1; % switch on preconditioning
-params.show = 0;
-params.maxvalplot = 2.5; params.slice = 10;
-
-tic; [X_fista_GH_TV] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_TV(:,:,10) , [0, 2.5]); title ('FISTA-GH-TV reconstruction');
-%%
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV-LLT...');
-clear params
-params.sino = Sino3D;
-params.N = recon_size;
-params.angles = angles_rad;
-params.iterFISTA = 100;
-params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV
-params.tol = 1.0e-04;
-params.iterTV = 20;
-params.lambdaHO = 35; % regularization parameter for LLT problem
-params.tauHO = 0.00011; % time-step parameter for explicit scheme
-params.iterHO = 70; % the max number of TV iterations
-params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter
-params.alpha_ring = 20; % to boost ring removal procedure
-params.precondition = 1; % switch on preconditioning
-params.show = 0;
-params.maxvalplot = 2.5; params.slice = 10;
-
-tic; [X_fista_GH_TVLLT] = FISTA_REC(params); toc;
-figure; imshow(X_fista_GH_TVLLT(:,:,10) , [0, 2.5]); title ('FISTA-GH-TV-LLT reconstruction');
-%%
-%%
-% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-% %%%%<<<< Not stable with this dataset! Requires more work >>>> %%%%%
-% clear params
-% params.sino = Sino3D(:,:,15);
-% params.N = 950;
-% params.angles = angles_rad;
-% params.iterFISTA = 150;
-% params.L_const = 30; % Lipshitz constant
-% params.lambdaTV = 0.009; % TV regularization parameter for FISTA-TV
-% params.tol = 1.0e-04;
-% params.iterTV = 20;
-% params.fidelity = 'student'; % choosing Student t penalty
-% % params.precondition = 1; % switch on preconditioning
-% params.show = 1;
-% params.maxvalplot = 2.5; params.slice = 1;
-%
-% tic; [X_fistaStudentTV] = FISTA_REC(params); toc;
-% figure; imshow(X_fistaStudentTV , [0, 2.5]); title ('FISTA-Student-TV reconstruction');
-%%
-slice = 10; % if 3D reconstruction
-
-fprintf('%s\n', 'Segmentation using OTSU method ...');
-level = graythresh(X_fista(:,:,slice));
-Segm_FISTA = im2bw(X_fista(:,:,slice),level);
-figure; imshow(Segm_FISTA, []); title ('Segmented FISTA-LS reconstruction');
-
-level = graythresh(X_fista_TV(:,:,slice));
-Segm_FISTA_TV = im2bw(X_fista_TV(:,:,slice),level);
-figure; imshow(Segm_FISTA_TV, []); title ('Segmented FISTA-LS-TV reconstruction');
-
-level = graythresh(X_fista_GH_TV(:,:,slice));
-BW_FISTA_GH_TV = im2bw(X_fista_GH_TV(:,:,slice),level);
-figure; imshow(BW_FISTA_GH_TV, []); title ('Segmented FISTA-GH-TV reconstruction');
-
-level = graythresh(X_fista_GH_TVLLT(:,:,slice));
-BW_FISTA_GH_TVLLT = im2bw(X_fista_GH_TVLLT(:,:,slice),level);
-figure; imshow(BW_FISTA_GH_TVLLT, []); title ('Segmented FISTA-GH-TV-LLT reconstruction');
-%% \ No newline at end of file
diff --git a/demo/Demo1.m b/demos/Demo1.m
index 08d46e1..486b97c 100644
--- a/demo/Demo1.m
+++ b/demos/Demo1.m
@@ -1,160 +1,174 @@
-% Demonstration of tomographic reconstruction from noisy and corrupted by
-% artifacts undersampled projection data using Students't penalty
-% Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle)
-
-% see ReadMe file for instructions
-clear all
-close all
-
-% adding paths
-addpath('data/');
-addpath('main_func/');
-addpath('supp/');
-
-load phantom_bone512.mat % load the phantom
-load my_red_yellowMAP.mat % load the colormap
-% load sino1.mat; % load noisy sinogram
-
-N = 512; % the size of the tomographic image NxN
-theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
-theta_rad = theta*(pi/180); % conversion to radians
-P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
-ROI = find(phantom > 0);
-
-zing_rings_add; % generating data, adding zingers and stripes
-
-%%
-fprintf('%s\n', 'Direct reconstruction using FBP...');
-FBP_1 = iradon(sino_zing_rings', theta, N);
-
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
-
-figure(1);
-subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
-clear params
-% define parameters
-params.sino = sino_zing_rings;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 180; %max number of outer iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-params.weights = Dweights; % statistical weighting
-tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction is:', min(error_FISTA(:)));
-
-figure(2); clf
-%set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(3); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
-clear params
-% define parameters
-params.sino = sino_zing_rings;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 200; % max number of outer iterations
-params.lambdaTV = 5.39e-05; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction is:', min(error_FISTA_TV(:)));
-
-figure(4); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(5); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
-clear params
-% define parameters
-params.sino = sino_zing_rings;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 60; % max number of outer iterations
-params.lambdaTV = 0.002526; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:)));
-
-figure(6); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(7); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-clear params
-% define parameters
-params.sino = sino_zing_rings;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 67; % max number of outer iterations
-%params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence)
-params.lambdaTV = 0.00152; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.fidelity = 'student'; % selecting students t fidelity
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:)));
-
-figure(8);
-set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(9);
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-% print all RMSE's
-fprintf('%s\n', '--------------------------------------------');
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
+% Demonstration of tomographic reconstruction from noisy and corrupted by
+% artifacts undersampled projection data using Students't penalty
+% Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle)
+
+% see Readme file for instructions
+%%
+% compile MEX-files ones
+% cd ..
+% cd main_func
+% compile_mex
+% cd ..
+% cd demos
+%%
+
+close all;clc;clear all;
+% adding paths
+addpath('../data/');
+addpath('../main_func/');
+addpath('../supp/');
+
+load phantom_bone512.mat % load the phantom
+load my_red_yellowMAP.mat % load the colormap
+% load sino1.mat; % load noisy sinogram
+
+N = 512; % the size of the tomographic image NxN
+theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
+theta_rad = theta*(pi/180); % conversion to radians
+P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
+ROI = find(phantom > 0);
+
+% using ASTRA to set the projection geometry
+% potentially parallel geometry can be replaced with a divergent one
+Z_slices = 1;
+det_row_count = Z_slices;
+proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, P, theta_rad);
+vol_geom = astra_create_vol_geom(N,N,Z_slices);
+
+zing_rings_add; % generating data, adding zingers and stripes
+%%
+fprintf('%s\n', 'Direct reconstruction using FBP...');
+FBP_1 = iradon(sino_zing_rings', theta, N);
+
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
+
+figure(1);
+subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
+colormap(cmapnew);
+
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS without regularization...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings; % sinogram
+params.iterFISTA = 45; %max number of outer iterations
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+params.weights = Dweights; % statistical weighting
+tic; [X_FISTA, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA(:)));
+error_FISTA = output.Resid_error; obj_FISTA = output.objective;
+
+figure(2); clf
+%set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-PWLS reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(3); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 45; % max number of outer iterations
+params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction is:', min(error_FISTA_TV(:)));
+error_FISTA_TV = output.Resid_error; obj_FISTA_TV = output.objective;
+
+figure(4); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-PWLS-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+figure(5); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 50; % max number of outer iterations
+params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.Ring_LambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
+params.Ring_Alpha = 20; % to accelerate ring-removal procedure
+params.show = 0; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+tic; [X_FISTA_GH_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:)));
+error_FISTA_GH_TV = output.Resid_error; obj_FISTA_GH_TV = output.objective;
+
+figure(6); clf
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(7); clf
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_zing_rings;
+params.iterFISTA = 55; % max number of outer iterations
+params.L_const = 0.1; % Lipshitz constant (can be chosen manually to accelerate convergence)
+params.Regul_LambdaTV = 0.00152; % regularization parameter for TV problem
+params.X_ideal = phantom; % ideal phantom
+params.ROI = ROI; % phantom region-of-interest
+params.weights = Dweights; % statistical weighting
+params.fidelity = 'student'; % selecting students t fidelity
+params.show = 1; % visualize reconstruction on each iteration
+params.slice = 1; params.maxvalplot = 0.6;
+params.initilize = 1; % warm start with SIRT
+tic; [X_FISTA_student_TV, output] = FISTA_REC(params); toc;
+
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:)));
+error_FISTA_student_TV = output.Resid_error; obj_FISTA_student_TV = output.objective;
+
+figure(8);
+set(gcf, 'Position', get(0,'Screensize'));
+subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
+colormap(cmapnew);
+
+figure(9);
+subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
+subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
+colormap(cmapnew);
+%%
+% print all RMSE's
+fprintf('%s\n', '--------------------------------------------');
+fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction:', min(error_FISTA(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction:', min(error_FISTA_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
% \ No newline at end of file
diff --git a/demo/DemoRD1.m b/demos/DemoRD1.m
index 9a43cb5..c25bb3e 100644
--- a/demo/DemoRD1.m
+++ b/demos/DemoRD1.m
@@ -4,9 +4,9 @@ clear all
close all
% adding paths
-addpath('data/');
-addpath('main_func/');
-addpath('supp/');
+addpath('../data/');
+addpath('../main_func/');
+addpath('../supp/');
load('sino_basalt.mat') % load real neutron data
@@ -16,13 +16,18 @@ recon_size = 650; % reconstruction size
FBP = iradon(sino_basalt, rad2deg(angles),recon_size);
figure; imshow(FBP , [0, 0.45]); title ('FBP reconstruction');
-
+%%
+% set projection/reconstruction geometry here
+Z_slices = 1;
+det_row_count = Z_slices;
+proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, size_det, angles);
+vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
%%
fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
clear params
-params.sino = sino_basalt';
-params.N = recon_size;
-params.angles = angles;
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_basalt;
params.iterFISTA = 50;
params.show = 0;
params.maxvalplot = 0.6; params.slice = 1;
@@ -32,14 +37,12 @@ figure; imshow(X_fista , [0, 0.45]); title ('FISTA-LS reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
clear params
-params.sino = sino_basalt';
-params.N = recon_size;
-params.angles = angles;
-params.iterFISTA = 150;
-params.lambdaTV = 0.0003; % TV regularization parameter
-params.tol = 1.0e-04;
-params.iterTV = 20;
-params.show = 1;
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_basalt;
+params.iterFISTA = 60;
+params.Regul_LambdaTV = 0.0003; % TV regularization parameter
+params.show = 0;
params.maxvalplot = 0.6; params.slice = 1;
tic; [X_fista_TV] = FISTA_REC(params); toc;
@@ -48,15 +51,14 @@ figure; imshow(X_fista_TV , [0, 0.45]); title ('FISTA-LS-TV reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
clear params
-params.sino = sino_basalt';
-params.N = recon_size;
-params.angles = angles;
-params.iterFISTA = 350;
-params.lambdaTV = 0.0003; % TV regularization parameter
-params.tol = 1.0e-04;
-params.iterTV = 20;
-params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter
-params.show = 1;
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_basalt;
+params.iterFISTA = 60;
+params.Regul_LambdaTV = 0.0003; % TV regularization parameter
+params.Ring_LambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter
+params.Ring_Alpha = 20; % acceleration for ring variable
+params.show = 0;
params.maxvalplot = 0.6; params.slice = 1;
tic; [X_fista_GH_TV] = FISTA_REC(params); toc;
@@ -65,16 +67,15 @@ figure; imshow(X_fista_GH_TV , [0, 0.45]); title ('FISTA-GH-TV reconstruction');
%%
fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
clear params
-params.sino = sino_basalt';
-params.N = recon_size;
-params.angles = angles;
-params.iterFISTA = 350;
-params.L_const = 7000; % Lipshitz constant
-params.lambdaTV = 0.0003; % TV regularization parameter
-params.tol = 1.0e-04;
-params.iterTV = 20;
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = sino_basalt;
+params.iterFISTA = 50;
+params.L_const = 3500; % Lipshitz constant
+params.Regul_LambdaTV = 0.0003; % TV regularization parameter
params.fidelity = 'student'; % choosing Student t penalty
params.show = 1;
+params.initilize = 1; % warm start with SIRT
params.maxvalplot = 0.6; params.slice = 1;
tic; [X_fistaStudentTV] = FISTA_REC(params); toc;
diff --git a/demos/DemoRD2.m b/demos/DemoRD2.m
new file mode 100644
index 0000000..ab4da96
--- /dev/null
+++ b/demos/DemoRD2.m
@@ -0,0 +1,126 @@
+% Demonstration of tomographic 3D reconstruction from X-ray synchrotron
+% dataset (dendrites) using various data fidelities
+% warning: can take up to 15-20 minutes to run for the whole 3D data
+clear all
+close all
+%%
+% % adding paths
+addpath('../data/');
+addpath('../main_func/');
+addpath('../supp/');
+
+load('DendrRawData.mat') % load raw data of 3D dendritic set
+angles_rad = angles*(pi/180); % conversion to radians
+size_det = size(data_raw3D,1); % detectors dim
+angSize = size(data_raw3D, 2); % angles dim
+slices_tot = size(data_raw3D, 3); % no of slices
+recon_size = 950; % reconstruction size
+
+Sino3D = zeros(size_det, angSize, slices_tot, 'single'); % log-corrected sino
+% normalizing the data
+for jj = 1:slices_tot
+ sino = data_raw3D(:,:,jj);
+ for ii = 1:angSize
+ Sino3D(:,ii,jj) = log((flats_ar(:,jj)-darks_ar(:,jj))./(single(sino(:,ii)) - darks_ar(:,jj)));
+ end
+end
+
+Sino3D = Sino3D.*1000;
+Weights3D = single(data_raw3D); % weights for PW model
+clear data_raw3D
+%%
+% set projection/reconstruction geometry here
+Z_slices = 20;
+det_row_count = Z_slices;
+proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, size_det, angles_rad);
+vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+%%
+fprintf('%s\n', 'Reconstruction using FBP...');
+FBP = iradon(Sino3D(:,:,10), angles,recon_size);
+figure; imshow(FBP , [0, 3]); title ('FBP reconstruction');
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS without regularization...');
+clear params
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = Sino3D;
+params.L_const = 7.6789e+08; % found quickly for one slice first
+params.iterFISTA = 30;
+params.weights = Weights3D;
+params.show = 1;
+params.maxvalplot = 2.5; params.slice = 4;
+
+tic; [X_fista, output] = FISTA_REC(params); toc;
+figure; imshow(X_fista(:,:,1) , [0, 2.5]); title ('FISTA-PWLS reconstruction');
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-PWLS-TV...');
+clear params
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = Sino3D;
+params.iterFISTA = 40;
+params.L_const = 7.6789e+08;
+params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV
+params.weights = Weights3D;
+params.show = 1;
+params.maxvalplot = 2.5; params.slice = 10;
+
+tic; [X_fista_TV] = FISTA_REC(params); toc;
+figure; imshow(X_fista_TV(:,:,1) , [0, 2.5]); title ('FISTA-PWLS-TV reconstruction');
+%%
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
+clear params
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = Sino3D;
+params.iterFISTA = 40;
+params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV
+params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
+params.Ring_Alpha = 21; % to boost ring removal procedure
+params.weights = Weights3D;
+params.show = 1;
+params.maxvalplot = 2.5; params.slice = 10;
+
+tic; [X_fista_GH_TV] = FISTA_REC(params); toc;
+figure; imshow(X_fista_GH_TV(:,:,1) , [0, 2.5]); title ('FISTA-GH-TV reconstruction');
+%%
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-GH-TV-LLT...');
+clear params
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = Sino3D;
+params.iterFISTA = 40;
+params.Regul_LambdaTV = 0.005; % TV regularization parameter for FISTA-TV
+params.Regul_LambdaHO = 200; % regularization parameter for LLT problem
+params.Regul_tauHO = 0.0005; % time-step parameter for the explicit scheme
+params.Regul_iterHO = 250; % the max number of TV iterations
+params.Ring_LambdaR_L1 = 0.002; % Soft-Thresh L1 ring variable parameter
+params.Ring_Alpha = 21; % to boost ring removal procedure
+params.weights = Weights3D;
+params.show = 1;
+params.maxvalplot = 2.5; params.slice = 10;
+
+tic; [X_fista_GH_TVLLT] = FISTA_REC(params); toc;
+figure; imshow(X_fista_GH_TVLLT(:,:,1) , [0, 2.5]); title ('FISTA-GH-TV-LLT reconstruction');
+%%
+%%
+% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
+% clear params
+% params.sino = Sino3D(:,:,10);
+% params.N = recon_size;
+% params.angles = angles_rad;
+% params.iterFISTA = 100;
+% params.L_const = 0.01; % Lipshitz constant
+% params.lambdaTV = 0.006; % TV regularization parameter for FISTA-TV
+% params.tol = 1.0e-04;
+% params.iterTV = 20;
+% params.fidelity = 'student'; % choosing Student t penalty
+% params.weights = Weights3D(:,:,10);
+% params.show = 0;
+% params.maxvalplot = 2.5; params.slice = 1;
+%
+% tic; [X_fistaStudentTV] = FISTA_REC(params); toc;
+% figure; imshow(X_fistaStudentTV(:,:,1), [0, 2.5]); title ('FISTA-Student-TV reconstruction');
+%%
diff --git a/license.txt b/license.txt
deleted file mode 100644
index 827b7f3..0000000
--- a/license.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-Copyright (c) 2017, Daniil Kazantsev, The University of Manchester.
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
- * Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the distribution
- * Neither the name of the nor the names
- of its contributors may be used to endorse or promote products derived
- from this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
diff --git a/main_func/FGP_TV.c b/main_func/FGP_TV.c
new file mode 100644
index 0000000..1a1fd13
--- /dev/null
+++ b/main_func/FGP_TV.c
@@ -0,0 +1,400 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon: tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ * [2] last function value
+ *
+ * Example of image denoising:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+ *
+ * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ *
+ * D. Kazantsev, 2016-17
+ *
+ */
+
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
+
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+ const int *dim_array;
+ float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil, funcval;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+ A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ iter = 50; /* default iterations number */
+ epsil = 0.001; /* default tolerance constant */
+ methTV = 0; /* default isotropic TV penalty */
+
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if (nrhs == 5) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ /*output function value (last iteration) */
+ funcval = 0.0f;
+ plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
+ float *funcvalA = (float *) mxGetData(plhs[1]);
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ tk = 1.0f;
+ tkp1=1.0f;
+ count = 1;
+ re_old = 0.0f;
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* begin iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /* computing the gradient of the objective function */
+ Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
+
+ /*Taking a step towards minus of the gradient*/
+ Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
+
+ /* projection step */
+ Proj_func2D(P1, P2, methTV, dimX, dimY);
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
+
+ /* calculate norm */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j],2);
+ re1 += pow(D[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 3) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ break; }
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ break; }}
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ /* calculating the objective function value */
+ if (ll == (iter-1)) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ }
+ }
+ printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ }
+ if (number_of_dims == 3) {
+ D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* begin iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /* computing the gradient of the objective function */
+ Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
+
+ /*Taking a step towards minus of the gradient*/
+ Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+
+ /* projection step */
+ Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
+
+ /* calculate norm - stopping rules*/
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j],2);
+ re1 += pow(D[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ /* stop if the norm residual is less than the tolerance EPS */
+ if (re < epsil) count++;
+ if (count > 3) {
+ Obj_func3D(A, D, P1, P2, P3,lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ break;}
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func3D(A, D, P1, P2, P3,lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ break; }}
+
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ copyIm(P3, P3_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ if (ll == (iter-1)) {
+ Obj_func3D(A, D, P1, P2, P3,lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j],2);
+ funcvalA[0] = sqrt(funcval);
+ }
+
+ }
+ printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ }
+}
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2;
+ int i,j;
+#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == 0) {val1 = 0.0f;} else {val1 = R1[(i-1)*dimY + (j)];}
+ if (j == 0) {val2 = 0.0f;} else {val2 = R2[(i)*dimY + (j-1)];}
+ D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
+ }}
+ return *D;
+}
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2, multip;
+ int i,j;
+ multip = (1.0f/(8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == dimX-1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i+1)*dimY + (j)];
+ if (j == dimY-1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j+1)];
+ P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
+ P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
+ }}
+ return 1;
+}
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
+{
+ float val1, val2, denom;
+ int i,j;
+ if (methTV == 0) {
+ /* isotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,denom)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ denom = pow(P1[(i)*dimY + (j)],2) + pow(P2[(i)*dimY + (j)],2);
+ if (denom > 1) {
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/sqrt(denom);
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/sqrt(denom);
+ }
+ }}
+ }
+ else {
+ /* anisotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ val1 = fabs(P1[(i)*dimY + (j)]);
+ val2 = fabs(P2[(i)*dimY + (j)]);
+ if (val1 < 1.0f) {val1 = 1.0f;}
+ if (val2 < 1.0f) {val2 = 1.0f;}
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/val1;
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/val2;
+ }}
+ }
+ return 1;
+}
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
+{
+ int i,j;
+ float multip;
+ multip = ((tk-1.0f)/tkp1);
+#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
+ R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
+ }}
+ return 1;
+}
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i,j,k;
+#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == 0) {val1 = 0.0f;} else {val1 = R1[(dimX*dimY)*k + (i-1)*dimY + (j)];}
+ if (j == 0) {val2 = 0.0f;} else {val2 = R2[(dimX*dimY)*k + (i)*dimY + (j-1)];}
+ if (k == 0) {val3 = 0.0f;} else {val3 = R3[(dimX*dimY)*(k-1) + (i)*dimY + (j)];}
+ D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
+ }}}
+ return *D;
+}
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3, multip;
+ int i,j,k;
+ multip = (1.0f/(8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == dimX-1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i+1)*dimY + (j)];
+ if (j == dimY-1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j+1)];
+ if (k == dimZ-1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k+1) + (i)*dimY + (j)];
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
+ }}}
+ return 1;
+}
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i,j,k;
+#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
+ if (val1 < 1.0f) {val1 = 1.0f;}
+ if (val2 < 1.0f) {val2 = 1.0f;}
+ if (val3 < 1.0f) {val3 = 1.0f;}
+
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)]/val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)]/val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)]/val3;
+ }}}
+ return 1;
+}
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
+{
+ int i,j,k;
+ float multip;
+ multip = ((tk-1.0f)/tkp1);
+#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ }}}
+ return 1;
+}
+
+/* General Functions */
+/*****************************************************************/
+/* Copy Image */
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, B) private(j)
+ for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
+ return *B;
+}
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m
index 79369a5..ed74181 100644
--- a/main_func/FISTA_REC.m
+++ b/main_func/FISTA_REC.m
@@ -1,34 +1,36 @@
-function [X, error, objective, residual] = FISTA_REC(params)
+function [X, output] = FISTA_REC(params)
-% <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox (parallel beam) >>>>
+% <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
% ___Input___:
% params.[] file:
-% - .sino (2D or 3D sinogram) [required]
-% - .N (image dimension) [required]
-% - .angles (in radians) [required]
+% - .proj_geom (geometry of the projector) [required]
+% - .vol_geom (geometry of the reconstructed object) [required]
+% - .sino (vectorized in 2D or 3D sinogram) [required]
% - .iterFISTA (iterations for the main loop)
% - .L_const (Lipschitz constant, default Power method) )
% - .X_ideal (ideal image, if given)
-% - .weights (statisitcal weights, size of sinogram)
+% - .weights (statisitcal weights, size of the sinogram)
% - .ROI (Region-of-interest, only if X_ideal is given)
-% - .lambdaTV (TV regularization parameter, default 0 - reg. TV is switched off)
-% - .tol (tolerance to terminate TV regularization, default 1.0e-04)
-% - .iterTV (iterations for the TV penalty, default 0)
-% - .lambdaHO (Higher Order LLT regularization parameter, default 0 - LLT reg. switched off)
-% - .iterHO (iterations for HO penalty, default 50)
-% - .tauHO (time step parameter for HO term)
-% - .lambdaR_L1 (regularization parameter for L1 ring minimization, if lambdaR_L1 > 0 then switch on ring removal, default 0)
-% - .alpha_ring (larger values can accelerate convergence but check stability, default 1)
+% - .Regul_LambdaTV (TV regularization parameter, default 0 - reg. TV is switched off)
+% - .Regul_tol (tolerance to terminate TV regularization, default 1.0e-04)
+% - .Regul_iterTV (iterations for the TV penalty, default 0)
+% - .Regul_LambdaHO (Higher Order LLT regularization parameter, default 0 - LLT reg. switched off)
+% - .Regul_iterHO (iterations for HO penalty, default 50)
+% - .Regul_tauHO (time step parameter for HO term)
+% - .Ring_LambdaR_L1 (regularization parameter for L1 ring minimization, if lambdaR_L1 > 0 then switch on ring removal, default 0)
+% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
% - .fidelity (choose between "LS" and "student" data fidelities)
+% - .initializ (a 'warm start' using SIRT method from ASTRA)
% - .precondition (1 - switch on Fourier filtering before backprojection)
% - .show (visualize reconstruction 1/0, (0 default))
% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
% - .slice (for 3D volumes - slice number to imshow)
% ___Output___:
% 1. X - reconstructed image/volume
-% 2. error - residual error (if X_ideal is given)
+% 2. Resid_error - residual error (if X_ideal is given)
% 3. value of the objective function
-% 4. forward projection(X)
+% 4. forward projection of X
+
% References:
% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
% Problems" by A. Beck and M Teboulle
@@ -38,49 +40,53 @@ function [X, error, objective, residual] = FISTA_REC(params)
% D. Kazantsev, 2016-17
% Dealing with input parameters
-if (isfield(params,'sino'))
- sino = params.sino;
- [anglesNumb, Detectors, SlicesZ] = size(sino);
- fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', anglesNumb, 'projections;', Detectors, 'detectors;', SlicesZ, 'vertical slices.');
+if (isfield(params,'proj_geom') == 0)
+ error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
else
- fprintf('%s \n', 'Please provide a sinogram');
+ proj_geom = params.proj_geom;
end
-if (isfield(params,'N'))
- N = params.N;
+if (isfield(params,'vol_geom') == 0)
+ error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
else
- fprintf('%s \n', 'Please provide N-size for the reconstructed image [N x N]');
+ vol_geom = params.vol_geom;
end
-if (isfield(params,'N'))
- angles = params.angles;
- if (length(angles) ~= anglesNumb)
- fprintf('%s \n', 'Sinogram angular dimension does not correspond to the angles dimension provided');
- end
+N = params.vol_geom.GridColCount;
+if (isfield(params,'sino'))
+ sino = params.sino;
+ [Detectors, anglesNumb, SlicesZ] = size(sino);
+ fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
else
- fprintf('%s \n', 'Please provide a vector of angles');
+ error('%s \n', 'Please provide a sinogram');
end
if (isfield(params,'iterFISTA'))
iterFISTA = params.iterFISTA;
else
iterFISTA = 30;
end
+if (isfield(params,'weights'))
+ weights = params.weights;
+else
+ weights = ones(size(sino));
+end
if (isfield(params,'L_const'))
L_const = params.L_const;
else
% using Power method (PM) to establish L constant
- vol_geom = astra_create_vol_geom(N, N);
- proj_geom = astra_create_proj_geom('parallel', 1.0, Detectors, angles);
-
- niter = 10; % number of iteration for PM
- x = rand(N,N);
- [sino_id, y] = astra_create_sino_cuda(x, proj_geom, vol_geom);
- astra_mex_data2d('delete', sino_id);
+ niter = 5; % number of iteration for PM
+ x = rand(N,N,SlicesZ);
+ sqweight = sqrt(weights);
+ [sino_id, y] = astra_create_sino3d_cuda(x, proj_geom, vol_geom);
+ y = sqweight.*y;
+ astra_mex_data3d('delete', sino_id);
for i = 1:niter
- x = astra_create_backprojection_cuda(y, proj_geom, vol_geom);
- s = norm(x);
+ [id,x] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+ s = norm(x(:));
x = x/s;
- [sino_id, y] = astra_create_sino_cuda(x, proj_geom, vol_geom);
- astra_mex_data2d('delete', sino_id);
+ [sino_id, y] = astra_create_sino3d_cuda(x, proj_geom, vol_geom);
+ y = sqweight.*y;
+ astra_mex_data3d('delete', sino_id);
+ astra_mex_data3d('delete', id);
end
L_const = s;
end
@@ -89,53 +95,48 @@ if (isfield(params,'X_ideal'))
else
X_ideal = 'none';
end
-if (isfield(params,'weights'))
- weights = params.weights;
-else
- weights = 1;
-end
if (isfield(params,'ROI'))
ROI = params.ROI;
else
ROI = find(X_ideal>=0.0);
end
-if (isfield(params,'lambdaTV'))
- lambdaTV = params.lambdaTV;
+if (isfield(params,'Regul_LambdaTV'))
+ lambdaTV = params.Regul_LambdaTV;
else
lambdaTV = 0;
end
-if (isfield(params,'tol'))
- tol = params.tol;
+if (isfield(params,'Regul_tol'))
+ tol = params.Regul_tol;
else
tol = 1.0e-04;
end
-if (isfield(params,'iterTV'))
- iterTV = params.iterTV;
+if (isfield(params,'Regul_iterTV'))
+ iterTV = params.Regul_iterTV;
else
- iterTV = 10;
+ iterTV = 25;
end
-if (isfield(params,'lambdaHO'))
- lambdaHO = params.lambdaHO;
+if (isfield(params,'Regul_LambdaHO'))
+ lambdaHO = params.Regul_LambdaHO;
else
lambdaHO = 0;
end
-if (isfield(params,'iterHO'))
- iterHO = params.iterHO;
+if (isfield(params,'Regul_iterHO'))
+ iterHO = params.Regul_iterHO;
else
iterHO = 50;
end
-if (isfield(params,'tauHO'))
- tauHO = params.tauHO;
+if (isfield(params,'Regul_tauHO'))
+ tauHO = params.Regul_tauHO;
else
tauHO = 0.0001;
end
-if (isfield(params,'lambdaR_L1'))
- lambdaR_L1 = params.lambdaR_L1;
+if (isfield(params,'Ring_LambdaR_L1'))
+ lambdaR_L1 = params.Ring_LambdaR_L1;
else
lambdaR_L1 = 0;
end
-if (isfield(params,'alpha_ring'))
- alpha_ring = params.alpha_ring; % higher values can accelerate ring removal procedure
+if (isfield(params,'Ring_Alpha'))
+ alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
else
alpha_ring = 1;
end
@@ -164,21 +165,43 @@ if (isfield(params,'slice'))
else
slice = 1;
end
+if (isfield(params,'initilize'))
+ % Create a data object for the reconstruction
+ rec_id = astra_mex_data3d('create', '-vol', vol_geom);
+
+ sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino);
+
+ % Set up the parameters for a reconstruction algorithm using the GPU
+ cfg = astra_struct('SIRT3D_CUDA');
+ cfg.ReconstructionDataId = rec_id;
+ cfg.ProjectionDataId = sinogram_id;
+
+ % Create the algorithm object from the configuration structure
+ alg_id = astra_mex_algorithm('create', cfg);
+ astra_mex_algorithm('iterate', alg_id, 35);
+ % Get the result
+ X = astra_mex_data3d('get', rec_id);
+
+ % Clean up. Note that GPU memory is tied up in the algorithm object,
+ % and main RAM in the data objects.
+ astra_mex_algorithm('delete', alg_id);
+ astra_mex_data3d('delete', rec_id);
+ astra_mex_data3d('delete', sinogram_id);
+else
+ X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
+end
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% building geometry (parallel-beam)
-vol_geom = astra_create_vol_geom(N, N);
-proj_geom = astra_create_proj_geom('parallel', 1.0, Detectors, angles);
-error = zeros(iterFISTA,1); % error vector
+Resid_error = zeros(iterFISTA,1); % error vector
objective = zeros(iterFISTA,1); % obhective vector
if (lambdaR_L1 > 0)
% do reconstruction WITH ring removal (Group-Huber fidelity)
t = 1;
- X = zeros(N,N,SlicesZ, 'single');
X_t = X;
- add_ring = zeros(anglesNumb, Detectors, SlicesZ, 'single'); % size of sinogram array
+ add_ring = zeros(size(sino),'single'); % size of sinogram array
r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
r_x = r;
@@ -189,47 +212,40 @@ if (lambdaR_L1 > 0)
t_old = t;
r_old = r;
- % all slices loop
- for j = 1:SlicesZ
-
- [sino_id, sino_updt] = astra_create_sino_cuda(X_t(:,:,j), proj_geom, vol_geom);
-
- for kkk = 1:anglesNumb
- add_ring(kkk,:,j) = sino(kkk,:,j) - alpha_ring.*r_x(:,j)';
- end
-
- residual = sino_updt - add_ring(:,:,j);
-
- if (precondition == 1)
- residual = filtersinc(residual'); % filtering residual (Fourier preconditioning)
- residual = residual';
- end
-
- vec = sum(residual);
- r(:,j) = r_x(:,j) - (1/L_const).*vec';
-
- x_temp = astra_create_backprojection_cuda(residual, proj_geom, vol_geom);
-
- X(:,:,j) = X_t(:,:,j) - (1/L_const).*x_temp;
- astra_mex_data2d('delete', sino_id);
+ [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+
+ for kkk = 1:anglesNumb
+ add_ring(:,kkk,:) = sino(:,kkk,:) - alpha_ring.*r_x;
+ end
+
+ residual = weights.*(sino_updt - add_ring);
+
+ if (precondition == 1)
+ residual = filtersinc(residual'); % filtering residual (Fourier preconditioning)
+ residual = residual';
end
+ vec = sum(residual,2);
+
+ r = r_x - (1./L_const).*vec;
+
+ [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
+
+ X = X_t - (1/L_const).*x_temp;
+ astra_mex_data3d('delete', sino_id);
+ astra_mex_data3d('delete', id);
+
if ((lambdaTV > 0) && (lambdaHO == 0))
- if (size(X,3) > 1)
- [X] = FISTA_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- gradTV = 1;
- else
- [X, gradTV] = FISTA_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- end
- objective(i) = 0.5.*norm(residual(:))^2 + norm(gradTV(:));
+ [X, f_val] = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
+ objective(i) = 0.5.*norm(residual(:))^2 + f_val;
% X = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
elseif ((lambdaHO > 0) && (lambdaTV == 0))
% Higher Order regularization
X = LLT_model(single(X), lambdaHO, tauHO, iterHO, tol, 0); % LLT higher order model
elseif ((lambdaTV > 0) && (lambdaHO > 0))
%X1 = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
- X1 = FISTA_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, tol, 0); % LLT higher order model
+ X1 = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
+ X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0); % LLT higher order model
X = 0.5.*(X1 + X2); % averaged combination of two solutions
elseif ((lambdaTV == 0) && (lambdaHO == 0))
objective(i) = 0.5.*norm(residual(:))^2;
@@ -244,11 +260,11 @@ if (lambdaR_L1 > 0)
if (show == 1)
figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
figure(11); plot(r); title('Rings offset vector')
- pause(0.03);
+ pause(0.03);
end
if (strcmp(X_ideal, 'none' ) == 0)
- error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %.4f \n', 'Iteration Number:', i, '|', 'Error RMSE:', error(i), '|', 'Objective:', objective(i));
+ Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+ fprintf('%s %i %s %s %.4f %s %s %.4f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
else
fprintf('%s %i %s %s %.4f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
end
@@ -258,50 +274,42 @@ if (lambdaR_L1 > 0)
else
% WITHOUT ring removal
t = 1;
- X = zeros(N,N,SlicesZ, 'single');
X_t = X;
- % iterations loop
+ % FISTA outer iterations loop
for i = 1:iterFISTA
X_old = X;
t_old = t;
- % slices loop
- for j = 1:SlicesZ
- [sino_id, sino_updt] = astra_create_sino_cuda(X_t(:,:,j), proj_geom, vol_geom);
- residual = weights.*(sino_updt - sino(:,:,j));
-
- % employ students t fidelity term
- if (strcmp(fidelity,'student') == 1)
- res_vec = reshape(residual, anglesNumb*Detectors,1);
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec,1);
- residual = reshape(gr, anglesNumb, Detectors);
- end
-
- if (precondition == 1)
- residual = filtersinc(residual'); % filtering residual (Fourier preconditioning)
- residual = residual';
- end
-
- x_temp = astra_create_backprojection_cuda(residual, proj_geom, vol_geom);
- X(:,:,j) = X_t(:,:,j) - (1/L_const).*x_temp;
- astra_mex_data2d('delete', sino_id);
+ [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+ residual = weights.*(sino_updt - sino);
+
+ % employ students t fidelity term
+ if (strcmp(fidelity,'student') == 1)
+ res_vec = reshape(residual, anglesNumb*Detectors*SlicesZ,1);
+ %s = 100;
+ %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
+ [ff, gr] = studentst(res_vec,1);
+ residual = reshape(gr, Detectors, anglesNumb, SlicesZ);
+ end
+
+ if (precondition == 1)
+ residual = filtersinc(residual'); % filtering residual (Fourier preconditioning)
+ residual = residual';
end
+ [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
+ X = X_t - (1/L_const).*x_temp;
+ astra_mex_data3d('delete', sino_id);
+ astra_mex_data3d('delete', id);
+
if ((lambdaTV > 0) && (lambdaHO == 0))
- if (size(X,3) > 1)
- [X] = FISTA_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- gradTV = 1;
- else
- [X, gradTV] = FISTA_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- end
+ [X,f_val] = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
if (strcmp(fidelity,'student') == 1)
- objective(i) = ff + norm(gradTV(:));
+ objective(i) = ff + f_val;
else
- objective(i) = 0.5.*norm(residual(:))^2 + norm(gradTV(:));
+ objective(i) = 0.5.*norm(residual(:))^2 + f_val;
end
% X = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
elseif ((lambdaHO > 0) && (lambdaTV == 0))
@@ -315,24 +323,25 @@ else
objective(i) = 0.5.*norm(residual(:))^2;
end
-
t = (1 + sqrt(1 + 4*t^2))/2; % updating t
X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
if (show == 1)
figure(11); imshow(X(:,:,slice), [0 maxvalplot]);
- pause(0.03);
+ pause(0.03);
end
if (strcmp(X_ideal, 'none' ) == 0)
- error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %.4f \n', 'Iteration Number:', i, '|', 'Error RMSE:', error(i), '|', 'Objective:', objective(i));
+ Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+ fprintf('%s %i %s %s %.4f %s %s %.4f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
else
fprintf('%s %i %s %s %.4f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
end
-
end
end
+output.Resid_error = Resid_error;
+output.objective = objective;
+output.L_const = L_const;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
diff --git a/main_func/FISTA_TV.c b/main_func/FISTA_TV.c
deleted file mode 100644
index 87681bc..0000000
--- a/main_func/FISTA_TV.c
+++ /dev/null
@@ -1,331 +0,0 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-
-/* C-OMP implementation of FISTA-TV denoising-regularization model (2D/3D)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambda - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon - tolerance constant
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .05*randn(size(Im)); % adding noise
- * u = FISTA_TV(single(u0), 0.05, 150, 1e-04);
- *
- * to compile with OMP support: mex FISTA_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
- * References: A. Beck & M. Teboulle
- *
- * D. Kazantsev, 2016*
- */
-
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float *grad, float lambda, int dimX, int dimY);
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
-float Proj_func2D(float *P1, float *P2, int dimX, int dimY);
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
-
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count;
- const int *dim_array;
- float *A, *grad=NULL, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- if(nrhs != 4) mexErrMsgTxt("Four input parameters is reqired: Image(2D/3D), Regularization parameter, Iterations, Tolerance");
-
- /*Handling Matlab input data*/
- A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- tk = 1.0f;
- tkp1=1.0f;
- count = 1;
- re_old = 0.0f;
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- grad = (float*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- tk = tkp1;
-
- /* computing the gradient of the objective function */
- Obj_func2D(A, D, R1, R2, grad, lambda, dimX, dimY);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
-
- /* projection step */
- Proj_func2D(P1, P2, dimX, dimY);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
-
- /* calculate norm */
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- if (re < epsil) count++;
- if (count > 3) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break; }
-
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
- }
- printf("TV iterations stopped at iteration: %i\n", ll);
- }
- if (number_of_dims == 3) {
- D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
- /* begin iterations */
- for(ll=0; ll<iter; ll++) {
-
- /*storing old values*/
- copyIm(D, D_old, dimX, dimY, dimZ);
- copyIm(P1, P1_old, dimX, dimY, dimZ);
- copyIm(P2, P2_old, dimX, dimY, dimZ);
- copyIm(P3, P3_old, dimX, dimY, dimZ);
-
- tk = tkp1;
-
- /* computing the gradient of the objective function */
- Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
-
- /*Taking a step towards minus of the gradient*/
- Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
- /* projection step */
- Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
-
- /*updating R and t*/
- tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
- Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
-
- /* calculate norm - stopping rules*/
- re = 0.0f; re1 = 0.0f;
- for(j=0; j<dimX*dimY*dimZ; j++)
- {
- re += pow(D[j] - D_old[j],2);
- re1 += pow(D[j],2);
- }
- re = sqrt(re)/sqrt(re1);
- /* stop if the norm residual is less than the tolerance EPS */
- if (re < epsil) count++;
- if (count > 3) break;
-
- /* check that the residual norm is decreasing */
- if (ll > 2) {
- if (re > re_old) break; }
-
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
- }
- printf("TV iterations stopped at iteration: %i\n", ll);
- }
-}
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float *grad, float lambda, int dimX, int dimY)
-{
- float val1, val2;
- int i,j;
-#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == 0) {val1 = R1[(i+1)*dimY + (j)];} else {val1 = R1[(i-1)*dimY + (j)];}
- if (j == 0) {val2 = R2[(i)*dimY + (j+1)];} else {val2 = R2[(i)*dimY + (j-1)];}
- D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
- grad[(i)*dimY + (j)] = lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
- }}
- return *D;
-}
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
-{
- float val1, val2;
- int i,j;
-#pragma omp parallel for shared(P1,P2,D,R1,R2) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
-
- if (i == dimX-1) {val1 = D[(i)*dimY + (j)] - D[(i-1)*dimY + (j)];} else {val1 = D[(i)*dimY + (j)] - D[(i+1)*dimY + (j)];}
- if (j == dimY-1) {val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j-1)];} else {val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j+1)];}
-
- P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + (1.0f/(8.0f*lambda))*val1;
- P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + (1.0f/(8.0f*lambda))*val2;
- }}
- return 1;
-}
-float Proj_func2D(float *P1, float *P2, int dimX, int dimY)
-{
- float val1, val2;
- int i,j;
-#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- val1 = fabs(P1[(i)*dimY + (j)]);
- val2 = fabs(P2[(i)*dimY + (j)]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
-
- P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/val1;
- P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/val2;
- }}
- return 1;
-}
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
-{
- int i,j;
-#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2) private(i,j)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + ((tk-1.0f)/tkp1)*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
- R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + ((tk-1.0f)/tkp1)*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
- }}
- return 1;
-}
-
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i,j,k;
-#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == 0) {val1 = R1[(dimX*dimY)*k + (i+1)*dimY + (j)];} else {val1 = R1[(dimX*dimY)*k + (i-1)*dimY + (j)];}
- if (j == 0) {val2 = R2[(dimX*dimY)*k + (i)*dimY + (j+1)];} else {val2 = R2[(dimX*dimY)*k + (i)*dimY + (j-1)];}
- if (k == 0) {val3 = R3[(dimX*dimY)*(k+1) + (i)*dimY + (j)];} else {val3 = R3[(dimX*dimY)*(k-1) + (i)*dimY + (j)];}
- D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
- }}}
- return *D;
-}
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i,j,k;
-#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) {val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i-1)*dimY + (j)];} else {val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i+1)*dimY + (j)];}
- if (j == dimY-1) {val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j-1)];} else {val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j+1)];}
- if (k == dimZ-1) {val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k-1) + (i)*dimY + (j)];} else {val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k+1) + (i)*dimY + (j)];}
-
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + (1.0f/(8.0f*lambda))*val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + (1.0f/(8.0f*lambda))*val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + (1.0f/(8.0f*lambda))*val3;
- }}}
- return 1;
-}
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i,j,k;
-#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
- val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
- val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
-
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)]/val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)]/val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)]/val3;
- }}}
- return 1;
-}
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
-{
- int i,j,k;
-#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + ((tk-1.0f)/tkp1)*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + ((tk-1.0f)/tkp1)*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + ((tk-1.0f)/tkp1)*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- }}}
- return 1;
-}
-
-/* General Functions */
-/*****************************************************************/
-/* Copy Image */
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, B) private(j)
- for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
- return *B;
-} \ No newline at end of file
diff --git a/main_func/LLT_model.c b/main_func/LLT_model.c
index a611e54..0aed31e 100644
--- a/main_func/LLT_model.c
+++ b/main_func/LLT_model.c
@@ -6,7 +6,7 @@
#include <stdio.h>
#include "omp.h"
-#define EPS 0.001
+#define EPS 0.01
/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
*
diff --git a/main_func/SplitBregman_TV.c b/main_func/SplitBregman_TV.c
index 691ccce..f143aa6 100644
--- a/main_func/SplitBregman_TV.c
+++ b/main_func/SplitBregman_TV.c
@@ -11,8 +11,9 @@
* Input Parameters:
* 1. Noisy image/volume
* 2. lambda - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon - tolerance constant
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon - tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
*
* Output:
* Filtered/regularized image
@@ -31,12 +32,13 @@
float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
-float updDxDy_shrink2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
-float updDxDyDz_shrink3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
void mexFunction(
@@ -44,28 +46,39 @@ void mexFunction(
int nrhs, const mxArray *prhs[])
{
- int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count;
+ int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
const int *dim_array;
float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
number_of_dims = mxGetNumberOfDimensions(prhs[0]);
dim_array = mxGetDimensions(prhs[0]);
- if(nrhs != 4) mexErrMsgTxt("Four input parameters is reqired: Image(2D/3D), Regularization parameter, Iterations, Tolerance");
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
/*Handling Matlab input data*/
A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ iter = 35; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ methTV = 0; /* default isotropic TV penalty */
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if (nrhs == 5) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
- lambda = 2.0f*2.0f;
+ lambda = 2.0f*mu;
count = 1;
- re_old = 0.0f;
+ re_old = 0.0f;
/*Handling Matlab output data*/
dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
-
if (number_of_dims == 2) {
dimZ = 1; /*2D case*/
U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
@@ -73,7 +86,7 @@ void mexFunction(
Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
copyIm(A, U, dimX, dimY, dimZ); /*initialize */
@@ -82,13 +95,14 @@ void mexFunction(
/*storing old values*/
copyIm(U, U_old, dimX, dimY, dimZ);
-
- gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
-
- updDxDy_shrink2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- //updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
- updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
+ /*GS iteration */
+ gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
+
+ if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+ else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+
+ updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
/* calculate norm to terminate earlier */
re = 0.0f; re1 = 0.0f;
@@ -97,20 +111,20 @@ void mexFunction(
re += pow(U_old[j] - U[j],2);
re1 += pow(U_old[j],2);
}
- re = sqrt(re)/sqrt(re1);
+ re = sqrt(re)/sqrt(re1);
if (re < epsil) count++;
- if (count > 4) break;
+ if (count > 4) break;
/* check that the residual norm is decreasing */
if (ll > 2) {
- if (re > re_old) break;
+ if (re > re_old) break;
}
- re_old = re;
- /*printf("%f %i %i \n", re, ll, count); */
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
- /*copyIm(U_old, U, dimX, dimY, dimZ); */
+ /*copyIm(U_old, U, dimX, dimY, dimZ); */
}
- printf("SB iterations stopped at iteration: %i\n", ll);
+ printf("SB iterations stopped at iteration: %i\n", ll);
}
if (number_of_dims == 3) {
U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
@@ -119,22 +133,24 @@ void mexFunction(
Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
- Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
copyIm(A, U, dimX, dimY, dimZ); /*initialize */
/* begin outer SB iterations */
for(ll=0; ll<iter; ll++) {
- /*storing old values*/
- copyIm(U, U_old, dimX, dimY, dimZ);
-
- gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
-
- updDxDyDz_shrink3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+ /*storing old values*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*GS iteration */
+ gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
+
+ if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+ else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
- updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
+ updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
/* calculate norm to terminate earlier */
re = 0.0f; re1 = 0.0f;
@@ -143,17 +159,17 @@ void mexFunction(
re += pow(U[j] - U_old[j],2);
re1 += pow(U[j],2);
}
- re = sqrt(re)/sqrt(re1);
+ re = sqrt(re)/sqrt(re1);
if (re < epsil) count++;
- if (count > 4) break;
+ if (count > 4) break;
/* check that the residual norm is decreasing */
if (ll > 2) {
if (re > re_old) break; }
/*printf("%f %i %i \n", re, ll, count); */
- re_old = re;
+ re_old = re;
}
- printf("SB iterations stopped at iteration: %i\n", ll);
+ printf("SB iterations stopped at iteration: %i\n", ll);
}
}
@@ -167,92 +183,92 @@ float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float
#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
+ /* symmetric boundary conditions (Neuman) */
j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
- sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
+ sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
sum *= lambda;
- sum += mu*A[(i)*dimY + (j)];
+ sum += mu*A[(i)*dimY + (j)];
U[(i)*dimY + (j)] = normConst*sum;
}}
return *U;
}
-float updDxDy_shrink2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
{
- int i,j,i1,j1;
- float val1, val11, val2, val22;
-
- #pragma omp parallel for shared(U) private(i,j,i1,j1,val1,val11,val2,val22)
- for(i=0; i<dimX; i++) {
+ int i,j,i1,j1;
+ float val1, val11, val2, val22, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
+ for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
/* symmetric boundary conditions (Neuman) */
i1 = i+1; if (i1 == dimX) i1 = i-1;
j1 = j+1; if (j1 == dimY) j1 = j-1;
-
+
val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
- val11 = fabs(val1) - 1.0f/lambda; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - 1.0f/lambda; if (val22 < 0) val22 = 0;
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
- }}
+ }}
return 1;
}
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
{
- int i,j,i1,j1;
- float val1, val11, val2, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-
- #pragma omp parallel for shared(U) private(i,j,i1,j1,val1,val11,val2,denom,denom_lam)
- for(i=0; i<dimX; i++) {
+ int i,j,i1,j1;
+ float val1, val11, val2, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
+ for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
/* symmetric boundary conditions (Neuman) */
i1 = i+1; if (i1 == dimX) i1 = i-1;
j1 = j+1; if (j1 == dimY) j1 = j-1;
-
+
val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
denom = sqrt(val1*val1 + val2*val2);
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
if (denom != 0.0f) {
- Dx[(i)*dimY + (j)] = val11*(val1/denom);
- Dy[(i)*dimY + (j)] = val11*(val2/denom);
- }
+ Dx[(i)*dimY + (j)] = val11*(val1/denom);
+ Dy[(i)*dimY + (j)] = val11*(val2/denom);
+ }
else {
Dx[(i)*dimY + (j)] = 0;
Dy[(i)*dimY + (j)] = 0;
}
- }}
+ }}
return 1;
}
float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
{
- int i,j,i1,j1;
- #pragma omp parallel for shared(U) private(i,j,i1,j1)
- for(i=0; i<dimX; i++) {
+ int i,j,i1,j1;
+#pragma omp parallel for shared(U) private(i,j,i1,j1)
+ for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
/* symmetric boundary conditions (Neuman) */
i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
- By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
- }}
- return 1;
+ By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
+ }}
+ return 1;
}
@@ -261,78 +277,115 @@ float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX,
float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
{
float normConst, d_val, b_val, sum;
- int i,j,i1,i2,j1,j2,k,k1,k2;
+ int i,j,i1,i2,j1,j2,k,k1,k2;
normConst = 1.0f/(mu + 6.0f*lambda);
#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
- b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
- sum = d_val + b_val;
- sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
- sum *= lambda;
- sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
- U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
- }}}
- return *U;
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+ k2 = k-1; if (k2 < 0) k2 = k+1;
+
+ d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
+ b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
+ sum = d_val + b_val;
+ sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
+ sum *= lambda;
+ sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
+ U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
+ }}}
+ return *U;
}
-float updDxDyDz_shrink3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
{
- int i,j,i1,j1,k,k1;
- float val1, val11, val2, val22, val3, val33;
-
- #pragma omp parallel for shared(U) private(i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
- for(i=0; i<dimX; i++) {
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val22, val3, val33, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
+ for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) + Bx[(dimX*dimY)*k + (i)*dimY + (j)];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) + By[(dimX*dimY)*k + (i)*dimY + (j)];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
-
- val11 = fabs(val1) - 1.0f/lambda; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - 1.0f/lambda; if (val22 < 0) val22 = 0;
- val33 = fabs(val3) - 1.0f/lambda; if (val33 < 0) val33 = 0;
-
- if (val1 !=0) Dx[(dimX*dimY)*k + (i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(dimX*dimY)*k + (i)*dimY + (j)] = 0;
- if (val2 !=0) Dy[(dimX*dimY)*k + (i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(dimX*dimY)*k + (i)*dimY + (j)] = 0;
- if (val3 !=0) Dz[(dimX*dimY)*k + (i)*dimY + (j)] = (val3/fabs(val3))*val33; else Dz[(dimX*dimY)*k + (i)*dimY + (j)] = 0;
-
- }}}
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+ val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
+
+ if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
+ if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
+ if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
+
+ }}}
+ return 1;
+}
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val3, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ denom = sqrt(val1*val1 + val2*val2 + val3*val3);
+
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
+ if (denom != 0.0f) {
+ Dx[index] = val11*(val1/denom);
+ Dy[index] = val11*(val2/denom);
+ Dz[index] = val11*(val3/denom);
+ }
+ else {
+ Dx[index] = 0;
+ Dy[index] = 0;
+ Dz[index] = 0;
+ }
+ }}}
return 1;
}
float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
{
- int i,j,k,i1,j1,k1;
- #pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
- for(i=0; i<dimX; i++) {
+ int i,j,k,i1,j1,k1;
+#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
+ for(i=0; i<dimX; i++) {
for(j=0; j<dimY; j++) {
for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
- By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
- Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
-
- }}}
- return 1;
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
+ By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
+ Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
+
+ }}}
+ return 1;
}
/* General Functions */
/*****************************************************************/
diff --git a/main_func/compile_mex.m b/main_func/compile_mex.m
index ea6e3a5..4d97bc2 100644
--- a/main_func/compile_mex.m
+++ b/main_func/compile_mex.m
@@ -1,4 +1,4 @@
% compile mex's
mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex FISTA_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
-mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" \ No newline at end of file
+mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
diff --git a/main_func/studentst.m b/main_func/studentst.m
index 99fed1e..93e0a0a 100644
--- a/main_func/studentst.m
+++ b/main_func/studentst.m
@@ -1,47 +1,47 @@
-function [f,g,h,s,k] = studentst(r,k,s)
-% Students T penalty with 'auto-tuning'
-%
-% use:
-% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
-% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
-% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
-%
-% input:
-% r - residual as column vector
-% s - scale (optional)
-% k - degrees of freedom (optional)
-%
-% output:
-% f - misfit (scalar)
-% g - gradient (column vector)
-% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
-% s,k - scale and degrees of freedom
-%
-% Tristan van Leeuwen, 2012.
-% tleeuwen@eos.ubc.ca
-
-% fit both s and k
-if nargin == 1
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
- s = tmp(1);
- k = tmp(2);
-end
-
-
-if nargin == 2
- opts = optimset('maxFunEvals',1e2);
- tmp = fminsearch(@(x)st(r,x,k),[1],opts);
- s = tmp(1);
-end
-
-% evaulate penalty
-[f,g,h] = st(r,s,k);
-
-
-function [f,g,h] = st(r,s,k)
-n = length(r);
-c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
-f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
-g = (k+1)*r./(s*k + conj(r).*r);
-h = (k+1)./(s*k + conj(r).*r);
+function [f,g,h,s,k] = studentst(r,k,s)
+% Students T penalty with 'auto-tuning'
+%
+% use:
+% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
+% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
+% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
+%
+% input:
+% r - residual as column vector
+% s - scale (optional)
+% k - degrees of freedom (optional)
+%
+% output:
+% f - misfit (scalar)
+% g - gradient (column vector)
+% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
+% s,k - scale and degrees of freedom
+%
+% Tristan van Leeuwen, 2012.
+% tleeuwen@eos.ubc.ca
+
+% fit both s and k
+if nargin == 1
+ opts = optimset('maxFunEvals',1e2);
+ tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
+ s = tmp(1);
+ k = tmp(2);
+end
+
+
+if nargin == 2
+ opts = optimset('maxFunEvals',1e2);
+ tmp = fminsearch(@(x)st(r,x,k),[1],opts);
+ s = tmp(1);
+end
+
+% evaulate penalty
+[f,g,h] = st(r,s,k);
+
+
+function [f,g,h] = st(r,s,k)
+n = length(r);
+c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
+f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
+g = (k+1)*r./(s*k + conj(r).*r);
+h = (k+1)./(s*k + conj(r).*r);
diff --git a/supp/RMSE.m b/supp/RMSE.m
index 734e4b8..002f776 100644
--- a/supp/RMSE.m
+++ b/supp/RMSE.m
@@ -1,7 +1,7 @@
-function err = RMSE(signal1, signal2)
-%RMSE Root Mean Squared Error
-
-err = sum((signal1 - signal2).^2)/length(signal1); % MSE
-err = sqrt(err); % RMSE
-
+function err = RMSE(signal1, signal2)
+%RMSE Root Mean Squared Error
+
+err = sum((signal1 - signal2).^2)/length(signal1); % MSE
+err = sqrt(err); % RMSE
+
end \ No newline at end of file
diff --git a/supp/add_wedges.m b/supp/add_wedges.m
index 8b8f2a7..5bc215c 100644
--- a/supp/add_wedges.m
+++ b/supp/add_wedges.m
@@ -27,4 +27,9 @@ grayImage(173:end,:) = 0;
%figure; imshow(grayImage, [0 1]);
MW_sino_artifacts = sino_zing_rings.*double(grayImage);
-%Dweights = Dweights.*double(grayImage); \ No newline at end of file
+% !!!
+% note that we do not re-calculate Dweights for MW_sino_artifacts
+% if one does: Dweights = Dweights.*double(grayImage);
+% then the MW artifacts will be reduced substantially,
+% through weighting. However we would like to explore
+% the effect of the penalty instead. \ No newline at end of file
diff --git a/supp/zing_rings_add.m b/supp/zing_rings_add.m
index 023ac27..d197b1f 100644
--- a/supp/zing_rings_add.m
+++ b/supp/zing_rings_add.m
@@ -1,14 +1,23 @@
% uncomment this part of script to generate data with different noise characterisitcs
fprintf('%s\n', 'Generating Projection Data...');
-multfactor = 1000;
+
% Creating RHS (b) - the sinogram (using a strip projection model)
-vol_geom = astra_create_vol_geom(N, N);
-proj_geom = astra_create_proj_geom('parallel', 1.0, P, theta_rad);
-proj_id_temp = astra_create_projector('strip', proj_geom, vol_geom);
-[sinogram_id, sinogramIdeal] = astra_create_sino(phantom./multfactor, proj_id_temp);
-astra_mex_data2d('delete',sinogram_id);
-astra_mex_algorithm('delete',proj_id_temp);
+% vol_geom = astra_create_vol_geom(N, N);
+% proj_geom = astra_create_proj_geom('parallel', 1.0, P, theta_rad);
+% proj_id_temp = astra_create_projector('strip', proj_geom, vol_geom);
+% [sinogram_id, sinogramIdeal] = astra_create_sino(phantom, proj_id_temp);
+% astra_mex_data2d('delete',sinogram_id);
+% astra_mex_algorithm('delete',proj_id_temp);
+
+%%
+% inverse crime data generation
+[sino_id, sinogramIdeal] = astra_create_sino3d_cuda(phantom, proj_geom, vol_geom);
+astra_mex_data3d('delete', sino_id);
+
+% [id,x] = astra_create_backprojection3d_cuda(sinogramIdeal, proj_geom, vol_geom);
+% astra_mex_data3d('delete', id);
+%%
%
% % adding Gaussian noise
% eta = 0.04; % Relative noise level
@@ -20,7 +29,7 @@ astra_mex_algorithm('delete',proj_id_temp);
%%
% adding zingers
val_offset = 0;
-sino_zing = sinogramIdeal;
+sino_zing = sinogramIdeal';
vec1 = [60, 80, 80, 70, 70, 90, 90, 40, 130, 145, 155, 125];
vec2 = [350, 450, 190, 500, 250, 530, 330, 230, 550, 250, 450, 195];
for jj = 1:length(vec1)
@@ -58,19 +67,17 @@ sino_zing_rings(sino_zing_rings < 0) = 0;
% adding Poisson noise
dose = 50000;
-dataExp = dose.*exp(-sino_zing_rings); % noiseless raw data
-dataPnoise = astra_add_noise_to_sino(dataExp,2*dose); % pre-log noisy raw data (weights)
-Dweights = dataPnoise;
-sinogram = log(dose./dataPnoise); %log corrected data -> sinogram
-sinogram = abs(sinogram);
-clear dataPnoise dataExp
+multifactor = 0.002;
-% normalizing
-sinogram = sinogram.*multfactor;
-sino_zing_rings = sinogram;
-Dweights = multfactor./Dweights;
+dataExp = dose.*exp(-sino_zing_rings*multifactor); % noiseless raw data
+dataPnoise = astra_add_noise_to_sino(dataExp, dose); % pre-log noisy raw data (weights)
+sino_zing_rings = log(dose./max(dataPnoise,1))/multifactor; %log corrected data -> sinogram
+Dweights = dataPnoise'; % statistical weights
+sino_zing_rings = sino_zing_rings';
+clear dataPnoise dataExp
+
+% w = dose./exp(sinogram*multifactor); % getting back raw data from log-cor
-%
% figure(1);
% set(gcf, 'Position', get(0,'Screensize'));
% subplot(1,2,1); imshow(phantom,[0 0.6]); title('Ideal Phantom'); colorbar;