summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--src/Python/fista_module.cpp5
1 files changed, 1 insertions, 4 deletions
diff --git a/src/Python/fista_module.cpp b/src/Python/fista_module.cpp
index aca3be0..f3add76 100644
--- a/src/Python/fista_module.cpp
+++ b/src/Python/fista_module.cpp
@@ -328,7 +328,6 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
else {
dim_array[2] = input.shape(2);
}
-
// Parameter handling is be done in Python
///*Handling Matlab input data*/
//if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
@@ -513,13 +512,11 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me
P3_old = reinterpret_cast<float *>(npP3_old.get_data());
R1 = reinterpret_cast<float *>(npR1.get_data());
R2 = reinterpret_cast<float *>(npR2.get_data());
- R2 = reinterpret_cast<float *>(npR3.get_data());
+ R3 = reinterpret_cast<float *>(npR3.get_data());
/* begin iterations */
for (ll = 0; ll<iter; ll++) {
-
/* computing the gradient of the objective function */
Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
-
/*Taking a step towards minus of the gradient*/
Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);