diff options
-rw-r--r-- | demos/Demo1.m | 174 | ||||
-rw-r--r-- | demos/Demo_Phantom3D_Cone.m | 66 | ||||
-rw-r--r-- | demos/Demo_Phantom3D_Parallel.m | 50 | ||||
-rw-r--r-- | main_func/FISTA_REC.m | 256 |
4 files changed, 234 insertions, 312 deletions
diff --git a/demos/Demo1.m b/demos/Demo1.m deleted file mode 100644 index 15e2e5b..0000000 --- a/demos/Demo1.m +++ /dev/null @@ -1,174 +0,0 @@ -% Demonstration of tomographic reconstruction from noisy and corrupted by
-% artifacts undersampled projection data using Students't penalty
-% Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle)
-
-% see Readme file for instructions
-%%
-% compile MEX-files ones
-% cd ..
-% cd main_func
-% compile_mex
-% cd ..
-% cd demos
-%%
-
-close all;clc;clear all;
-% adding paths
-addpath('../data/');
-addpath('../main_func/'); addpath('../main_func/regularizers_CPU/');
-addpath('../supp/');
-
-load phantom_bone512.mat % load the phantom
-load my_red_yellowMAP.mat % load the colormap
-% load sino1.mat; % load noisy sinogram
-
-N = 512; % the size of the tomographic image NxN
-theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
-theta_rad = theta*(pi/180); % conversion to radians
-P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
-ROI = find(phantom > 0);
-
-% using ASTRA to set the projection geometry
-% potentially parallel geometry can be replaced with a divergent one
-Z_slices = 1;
-det_row_count = Z_slices;
-proj_geom = astra_create_proj_geom('parallel3d', 1, 1, det_row_count, P, theta_rad);
-vol_geom = astra_create_vol_geom(N,N,Z_slices);
-
-zing_rings_add; % generating data, adding zingers and stripes
-%%
-fprintf('%s\n', 'Direct reconstruction using FBP...');
-FBP_1 = iradon(sino_zing_rings', theta, N);
-
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
-
-figure(1);
-subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
-colormap(cmapnew);
-
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-PWLS without regularization...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = sino_zing_rings; % sinogram
-params.iterFISTA = 45; %max number of outer iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-params.weights = Dweights; % statistical weighting
-tic; [X_FISTA, output] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA(:)));
-error_FISTA = output.Resid_error; obj_FISTA = output.objective;
-
-figure(2); clf
-%set(gcf, 'Position', get(0,'Screensize'));
-subplot(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-PWLS reconstruction'); colorbar;
-subplot(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(3); clf
-subplot(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
-subplot(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-PWLS-TV...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = sino_zing_rings;
-params.iterFISTA = 45; % max number of outer iterations
-params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_TV, output] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction is:', min(error_FISTA_TV(:)));
-error_FISTA_TV = output.Resid_error; obj_FISTA_TV = output.objective;
-
-figure(4); clf
-subplot(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-PWLS-TV reconstruction'); colorbar;
-subplot(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(5); clf
-subplot(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
-subplot(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = sino_zing_rings;
-params.iterFISTA = 50; % max number of outer iterations
-params.Regul_LambdaTV = 0.0015; % regularization parameter for TV problem
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.Ring_LambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
-params.Ring_Alpha = 20; % to accelerate ring-removal procedure
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_GH_TV, output] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:)));
-error_FISTA_GH_TV = output.Resid_error; obj_FISTA_GH_TV = output.objective;
-
-figure(6); clf
-subplot(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
-subplot(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(7); clf
-subplot(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
-subplot(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-clear params
-% define parameters
-params.proj_geom = proj_geom; % pass geometry to the function
-params.vol_geom = vol_geom;
-params.sino = sino_zing_rings;
-params.iterFISTA = 55; % max number of outer iterations
-params.L_const = 0.1; % Lipshitz constant (can be chosen manually to accelerate convergence)
-params.Regul_LambdaTV = 0.00152; % regularization parameter for TV problem
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.fidelity = 'student'; % selecting students t fidelity
-params.show = 1; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-params.initilize = 1; % warm start with SIRT
-tic; [X_FISTA_student_TV, output] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:)));
-error_FISTA_student_TV = output.Resid_error; obj_FISTA_student_TV = output.objective;
-
-figure(8);
-set(gcf, 'Position', get(0,'Screensize'));
-subplot(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
-subplot(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(9);
-subplot(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
-subplot(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-% print all RMSE's
-fprintf('%s\n', '--------------------------------------------');
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction:', min(error_FISTA(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS-TV reconstruction:', min(error_FISTA_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
-%
\ No newline at end of file diff --git a/demos/Demo_Phantom3D_Cone.m b/demos/Demo_Phantom3D_Cone.m new file mode 100644 index 0000000..6419386 --- /dev/null +++ b/demos/Demo_Phantom3D_Cone.m @@ -0,0 +1,66 @@ +% A demo script to reconstruct 3D synthetic data using FISTA method for +% CONE BEAM geometry +% requirements: ASTRA-toolbox and TomoPhantom toolbox + +close all;clc;clear all; +% adding paths +addpath('../data/'); +addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/'); +addpath('../supp/'); + + +%% +% build 3D phantom using TomoPhantom +modelNo = 3; % see Phantom3DLibrary.dat file in TomoPhantom +N = 256; % x-y-z size (cubic image) +angles = 0:1.5:360; % angles vector in degrees +angles_rad = angles*(pi/180); % conversion to radians +det_size = round(sqrt(2)*N); % detector size +% in order to run functions you have to go to the directory: +cd /home/algol/Documents/MATLAB/TomoPhantom/functions/ +TomoPhantom = buildPhantom3D(modelNo,N); % generate 3D phantom +%% +% using ASTRA-toolbox to set the projection geometry (cone beam) +% eg: astra.create_proj_geom('cone', 1.0 (resol), 1.0 (resol), detectorRowCount, detectorColCount, angles, originToSource, originToDetector) +vol_geom = astra_create_vol_geom(N,N,N); +proj_geom = astra_create_proj_geom('cone', 1.0, 1.0, N, det_size, angles_rad, 2000, 2160); +%% +% do forward projection using ASTRA +% inverse crime data generation +[sino_id, SinoCone3D] = astra_create_sino3d_cuda(TomoPhantom, proj_geom, vol_geom); +astra_mex_data3d('delete', sino_id); +%% +fprintf('%s\n', 'Reconstructing with CGLS using ASTRA-toolbox ...'); +vol_id = astra_mex_data3d('create', '-vol', vol_geom, 0); +proj_id = astra_mex_data3d('create', '-proj3d', proj_geom, SinoCone3D); +cfg = astra_struct('CGLS3D_CUDA'); +cfg.ProjectionDataId = proj_id; +cfg.ReconstructionDataId = vol_id; +cfg.option.MinConstraint = 0; +alg_id = astra_mex_algorithm('create', cfg); +astra_mex_algorithm('iterate', alg_id, 15); +reconASTRA_3D = astra_mex_data3d('get', vol_id); +%% +fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); +clear params +% define parameters +params.proj_geom = proj_geom; % pass geometry to the function +params.vol_geom = vol_geom; +params.sino = single(SinoCone3D); % sinogram +params.iterFISTA = 30; %max number of outer iterations +params.X_ideal = TomoPhantom; % ideal phantom +params.show = 1; % visualize reconstruction on each iteration +params.slice = round(N/2); params.maxvalplot = 1; +tic; [X_FISTA, output] = FISTA_REC(params); toc; + +error_FISTA = output.Resid_error; obj_FISTA = output.objective; +fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction is:', min(error_FISTA(:))); + +Resid3D = (TomoPhantom - X_FISTA).^2; +figure(2); +subplot(1,2,1); imshow(X_FISTA(:,:,params.slice),[0 params.maxvalplot]); title('FISTA-LS reconstruction'); colorbar; +subplot(1,2,2); imshow(Resid3D(:,:,params.slice),[0 0.1]); title('residual'); colorbar; +figure(3); +subplot(1,2,1); plot(error_FISTA); title('RMSE plot'); colorbar; +subplot(1,2,2); plot(obj_FISTA); title('Objective plot'); colorbar; +%%
\ No newline at end of file diff --git a/demos/Demo_Phantom3D_Parallel.m b/demos/Demo_Phantom3D_Parallel.m new file mode 100644 index 0000000..ac9827c --- /dev/null +++ b/demos/Demo_Phantom3D_Parallel.m @@ -0,0 +1,50 @@ +% A demo script to reconstruct 3D synthetic data using FISTA method for
+% PARALLEL BEAM geometry
+% requirements: ASTRA-toolbox and TomoPhantom toolbox
+
+close all;clc;clear all;
+% adding paths
+addpath('../data/');
+addpath('../main_func/'); addpath('../main_func/regularizers_CPU/'); addpath('../main_func/regularizers_GPU/NL_Regul/'); addpath('../main_func/regularizers_GPU/Diffus_HO/');
+addpath('../supp/');
+
+%%
+% build 3D phantom using TomoPhantom and generate projection data
+modelNo = 3; % see Phantom3DLibrary.dat file in TomoPhantom
+N = 256; % x-y-z size (cubic image)
+angles = 1:0.5:180; % angles vector in degrees
+angles_rad = angles*(pi/180); % conversion to radians
+det_size = round(sqrt(2)*N); % detector size
+% in order to run functions you have to go to the directory:
+cd /home/algol/Documents/MATLAB/TomoPhantom/functions/
+TomoPhantom = buildPhantom3D(modelNo,N); % generate 3D phantom
+sino_tomophan3D = buildSino3D(modelNo, N, det_size, single(angles)); % generate data
+%%
+% using ASTRA-toolbox to set the projection geometry (parallel beam)
+proj_geom = astra_create_proj_geom('parallel', 1, det_size, angles_rad);
+vol_geom = astra_create_vol_geom(N,N);
+%%
+fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
+clear params
+% define parameters
+params.proj_geom = proj_geom; % pass geometry to the function
+params.vol_geom = vol_geom;
+params.sino = single(sino_tomophan3D); % sinogram
+params.iterFISTA = 5; %max number of outer iterations
+params.X_ideal = TomoPhantom; % ideal phantom
+params.show = 1; % visualize reconstruction on each iteration
+params.subsets = 12;
+params.slice = round(N/2); params.maxvalplot = 1;
+tic; [X_FISTA, output] = FISTA_REC(params); toc;
+
+error_FISTA = output.Resid_error; obj_FISTA = output.objective;
+fprintf('%s %.4f\n', 'Min RMSE for FISTA-PWLS reconstruction is:', min(error_FISTA(:)));
+
+Resid3D = (TomoPhantom - X_FISTA).^2;
+figure(2);
+subplot(1,2,1); imshow(X_FISTA(:,:,params.slice),[0 params.maxvalplot]); title('FISTA-LS reconstruction'); colorbar;
+subplot(1,2,2); imshow(Resid3D(:,:,params.slice),[0 0.1]); title('residual'); colorbar;
+figure(3);
+subplot(1,2,1); plot(error_FISTA); title('RMSE plot');
+subplot(1,2,2); plot(obj_FISTA); title('Objective plot');
+%%
\ No newline at end of file diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m index 6987dca..d177748 100644 --- a/main_func/FISTA_REC.m +++ b/main_func/FISTA_REC.m @@ -15,7 +15,7 @@ function [X, output] = FISTA_REC(params) %----------------General Parameters------------------------ % - .proj_geom (geometry of the projector) [required] % - .vol_geom (geometry of the reconstructed object) [required] -% - .sino (vectorized in 2D or 3D sinogram) [required] +% - .sino (2D or 3D sinogram) [required] % - .iterFISTA (iterations for the main loop, default 40) % - .L_const (Lipschitz constant, default Power method) ) % - .X_ideal (ideal image, if given) @@ -94,45 +94,36 @@ else weights = ones(size(sino)); end if (isfield(params,'fidelity')) - studentt = 0; + studentt = 0; if (strcmp(params.fidelity,'studentt') == 1) - studentt = 1; - lambdaR_L1 = 0; - end + studentt = 1; + end else - studentt = 0; + studentt = 0; end if (isfield(params,'L_const')) L_const = params.L_const; else % using Power method (PM) to establish L constant - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) - % for parallel geometry we can do just one slice - fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...'); + fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...'); + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % for 2D geometry we can do just one selected slice niter = 15; % number of iteration for the PM x1 = rand(N,N,1); sqweight = sqrt(weights(:,:,1)); - proj_geomT = proj_geom; - proj_geomT.DetectorRowCount = 1; - vol_geomT = vol_geom; - vol_geomT.GridSliceCount = 1; - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); for i = 1:niter - [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT); + [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom); s = norm(x1(:)); x1 = x1./s; - [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); - y = sqweight.*y; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); end - %clear proj_geomT vol_geomT - else - % divergen beam geometry - fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry... will take some time!'); + elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec')) + % 3D geometry niter = 8; % number of iteration for PM x1 = rand(N,N,SlicesZ); sqweight = sqrt(weights); @@ -150,6 +141,8 @@ else astra_mex_data3d('delete', id); end clear x1 + else + error('%s \n', 'No suitable geometry has been found!'); end L_const = s; end @@ -272,28 +265,10 @@ else slice = 1; end if (isfield(params,'initialize')) - % a 'warm start' with SIRT method - % Create a data object for the reconstruction - rec_id = astra_mex_data3d('create', '-vol', vol_geom); - - sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino); - - % Set up the parameters for a reconstruction algorithm using the GPU - cfg = astra_struct('SIRT3D_CUDA'); - cfg.ReconstructionDataId = rec_id; - cfg.ProjectionDataId = sinogram_id; - - % Create the algorithm object from the configuration structure - alg_id = astra_mex_algorithm('create', cfg); - astra_mex_algorithm('iterate', alg_id, 35); - % Get the result - X = astra_mex_data3d('get', rec_id); - - % Clean up. Note that GPU memory is tied up in the algorithm object, - % and main RAM in the data objects. - astra_mex_algorithm('delete', alg_id); - astra_mex_data3d('delete', rec_id); - astra_mex_data3d('delete', sinogram_id); + X = params.initialize; + if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ)) + error('%s \n', 'The initialized volume has different dimensions!'); + end else X = zeros(N,N,SlicesZ, 'single'); % storage for the solution end @@ -345,16 +320,19 @@ if (subsets == 0) t_old = t; r_old = r; - % if the geometry is parallel use slice-by-slice projection-backprojection routine - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) + + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine sino_updt = zeros(size(sino),'single'); for kkk = 1:SlicesZ - [sino_id, sino_updt(:,:,kkk)] = astra_create_sino3d_cuda(X_t(:,:,kkk), proj_geomT, vol_geomT); - astra_mex_data3d('delete', sino_id); + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom); + sino_updt(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); end else - % for divergent 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + astra_mex_data3d('delete', sino_id); end if (lambdaR_L1 > 0) @@ -368,40 +346,36 @@ if (subsets == 0) end r = r_x - (1./L_const).*vec; objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - else - if (studentt == 1) - % artifacts removal with Students t penalty - residual = weights.*(sino_updt - sino); - for kkk = 1:SlicesZ - res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram + elseif (studentt > 0) + % artifacts removal with Students t penalty + residual = weights.*(sino_updt - sino); + for kkk = 1:SlicesZ + res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram %s = 100; %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); [ff, gr] = studentst(res_vec, 1); residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb); - end - objective(i) = ff; % for the objective function output - else + end + objective(i) = ff; % for the objective function output + else % no ring removal (LS model) residual = weights.*(sino_updt - sino); - objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output - end - end + objective(i) = 0.5*norm(residual(:)); % for the objective function output + end - % if the geometry is parallel use slice-by-slice projection-backprojection routine - if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'parallel3d')) + % if the geometry is 2D use slice-by-slice projection-backprojection routine + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) x_temp = zeros(size(X),'single'); for kkk = 1:SlicesZ - [id, x_temp(:,:,kkk)] = astra_create_backprojection3d_cuda(squeeze(residual(:,:,kkk)), proj_geomT, vol_geomT); - astra_mex_data3d('delete', id); + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom); end else [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); + astra_mex_data3d('delete', id); end X = X_t - (1/L_const).*x_temp; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); - % regularization + % ----------------Regularization part------------------------% if (lambdaFGP_TV > 0) % FGP-TV regularization if ((strcmp('2D', Dimension) == 1)) @@ -510,95 +484,104 @@ if (subsets == 0) end end else - % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than classical) + % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version) t = 1; X_t = X; - proj_geomSUB = proj_geom; - + proj_geomSUB = proj_geom; r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors r_x = r; % another ring variable residual2 = zeros(size(sino),'single'); + sino_updt_FULL = zeros(size(sino),'single'); % Outer FISTA iterations loop - for i = 1:iterFISTA + for i = 1:iterFISTA - % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required - % one solution is to work with a full sinogram at times - if ((i >= 3) && (lambdaR_L1 > 0)) - [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); - astra_mex_data3d('delete', sino_id2); + if ((i > 1) && (lambdaR_L1 > 0)) + % in order to make Group-Huber fidelity work with ordered subsets + % we still need to work with full sinogram + + % the offset variable must be calculated for the whole + % updated sinogram - sino_updt_FULL + for kkk = 1:anglesNumb + residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + + r_old = r; + vec = sum(residual2,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; % update ring variable end % subsets loop counterInd = 1; + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + for kkk = 1:SlicesZ + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom); + sino_updt_Sub(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); + end + else + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', sino_id); + end for ss = 1:subsets X_old = X; - t_old = t; - r_old = r; + t_old = t; numProjSub = binsDiscr(ss); % the number of projections per subset CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces); + sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single'); if (lambdaR_L1 > 0) + % Group-Huber fidelity (ring removal) - % the ring removal part (Group-Huber fidelity) - % first 2 iterations do additional work reconstructing whole dataset to ensure - % the stablility - if (i < 3) - [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); - astra_mex_data3d('delete', sino_id2); - else - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); - end - for kkk = 1:anglesNumb - residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt2(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); - end - - residual = zeros(Detectors, numProjSub, SlicesZ,'single'); + residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset for kkk = 1:numProjSub indC = CurrSubIndeces(kkk); - if (i < 3) - residual(:,kkk,:) = squeeze(residual2(:,indC,:)); - else - residual(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); - end + residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram end - vec = sum(residual2,2); - if (SlicesZ > 1) - vec = squeeze(vec(:,1,:)); + + elseif (studentt > 0) + % student t data fidelity + + + % artifacts removal with Students t penalty + residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); + + for kkk = 1:SlicesZ + res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram + %s = 100; + %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); + [ff, gr] = studentst(res_vec, 1); + residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub); end - r = r_x - (1./L_const).*vec; + objective(i) = ff; % for the objective function output else - [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + % PWLS model - if (studentt == 1) - % artifacts removal with Students t penalty - residual = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt - squeeze(sino(:,CurrSubIndeces,:))); - - for kkk = 1:SlicesZ - res_vec = reshape(residual(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram - %s = 100; - %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); - [ff, gr] = studentst(res_vec, 1); - residual(:,:,kkk) = reshape(gr, Detectors, numProjSub); - end - objective(i) = ff; % for the objective function output - else - % no ring removal (LS model) - residual = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt - squeeze(sino(:,CurrSubIndeces,:))); - end - end - [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geomSUB, vol_geom); + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + x_temp = zeros(size(X),'single'); + for kkk = 1:SlicesZ + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom); + end + else + [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', id); + end - X = X_t - (1/L_const).*x_temp; - astra_mex_data3d('delete', sino_id); - astra_mex_data3d('delete', id); + X = X_t - (1/L_const).*x_temp; - % regularization + % ----------------Regularization part------------------------% if (lambdaFGP_TV > 0) % FGP-TV regularization if ((strcmp('2D', Dimension) == 1)) @@ -680,20 +663,17 @@ else end end - if (lambdaR_L1 > 0) - r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector - end - t = (1 + sqrt(1 + 4*t^2))/2; % updating t X_t = X + ((t_old-1)/t).*(X - X_old); % updating X - - if (lambdaR_L1 > 0) - r_x = r + ((t_old-1)/t).*(r - r_old); % updating r - end - counterInd = counterInd + numProjSub; end + % working with a 'ring vector' + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + if (show == 1) figure(10); imshow(X(:,:,slice), [0 maxvalplot]); if (lambdaR_L1 > 0) |