summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--main_func/regularizers_CPU/FGP_TV.c198
-rw-r--r--main_func/regularizers_CPU/FGP_TV_core.c200
-rw-r--r--main_func/regularizers_CPU/FGP_TV_core.h63
-rw-r--r--main_func/regularizers_CPU/LLT_model.c324
-rw-r--r--main_func/regularizers_CPU/LLT_model_core.c300
-rw-r--r--main_func/regularizers_CPU/LLT_model_core.h64
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul.c199
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul_core.c220
-rw-r--r--main_func/regularizers_CPU/PatchBased_Regul_core.h64
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV.c261
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV_core.c270
-rw-r--r--main_func/regularizers_CPU/SplitBregman_TV_core.h59
-rw-r--r--main_func/regularizers_CPU/TGV_PD.c207
-rw-r--r--main_func/regularizers_CPU/TGV_PD_core.c217
-rw-r--r--main_func/regularizers_CPU/TGV_PD_core.h64
15 files changed, 1619 insertions, 1091 deletions
diff --git a/main_func/regularizers_CPU/FGP_TV.c b/main_func/regularizers_CPU/FGP_TV.c
index 1a1fd13..5d8cfb9 100644
--- a/main_func/regularizers_CPU/FGP_TV.c
+++ b/main_func/regularizers_CPU/FGP_TV.c
@@ -1,10 +1,23 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
+#include "FGP_TV_core.h"
/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
*
@@ -33,17 +46,6 @@
*
*/
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
-float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
-
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
-
void mexFunction(
int nlhs, mxArray *plhs[],
@@ -236,165 +238,3 @@ void mexFunction(
printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
}
}
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
-{
- float val1, val2;
- int i,j;
-#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[(i-1)*dimY + (j)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(i)*dimY + (j-1)];}
- D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
- }}
- return *D;
-}
-float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
-{
- float val1, val2, multip;
- int i,j;
- multip = (1.0f/(8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i+1)*dimY + (j)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j+1)];
- P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
- P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
- }}
- return 1;
-}
-float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
-{
- float val1, val2, denom;
- int i,j;
- if (methTV == 0) {
- /* isotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,j,denom)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- denom = pow(P1[(i)*dimY + (j)],2) + pow(P2[(i)*dimY + (j)],2);
- if (denom > 1) {
- P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/sqrt(denom);
- P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/sqrt(denom);
- }
- }}
- }
- else {
- /* anisotropic TV*/
-#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- val1 = fabs(P1[(i)*dimY + (j)]);
- val2 = fabs(P2[(i)*dimY + (j)]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)]/val1;
- P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)]/val2;
- }}
- }
- return 1;
-}
-float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
-{
- int i,j;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
- R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
- }}
- return 1;
-}
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i,j,k;
-#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* boundary conditions */
- if (i == 0) {val1 = 0.0f;} else {val1 = R1[(dimX*dimY)*k + (i-1)*dimY + (j)];}
- if (j == 0) {val2 = 0.0f;} else {val2 = R2[(dimX*dimY)*k + (i)*dimY + (j-1)];}
- if (k == 0) {val3 = 0.0f;} else {val3 = R3[(dimX*dimY)*(k-1) + (i)*dimY + (j)];}
- D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
- }}}
- return *D;
-}
-float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3, multip;
- int i,j,k;
- multip = (1.0f/(8.0f*lambda));
-#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* boundary conditions */
- if (i == dimX-1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i+1)*dimY + (j)];
- if (j == dimY-1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j+1)];
- if (k == dimZ-1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k+1) + (i)*dimY + (j)];
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
- }}}
- return 1;
-}
-float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
-{
- float val1, val2, val3;
- int i,j,k;
-#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
- val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
- val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
- if (val1 < 1.0f) {val1 = 1.0f;}
- if (val2 < 1.0f) {val2 = 1.0f;}
- if (val3 < 1.0f) {val3 = 1.0f;}
-
- P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)]/val1;
- P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)]/val2;
- P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)]/val3;
- }}}
- return 1;
-}
-float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
-{
- int i,j,k;
- float multip;
- multip = ((tk-1.0f)/tkp1);
-#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
- }}}
- return 1;
-}
-
-/* General Functions */
-/*****************************************************************/
-/* Copy Image */
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, B) private(j)
- for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
- return *B;
-}
diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/main_func/regularizers_CPU/FGP_TV_core.c
new file mode 100644
index 0000000..c383a71
--- /dev/null
+++ b/main_func/regularizers_CPU/FGP_TV_core.c
@@ -0,0 +1,200 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "FGP_TV_core.h"
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2;
+ int i, j;
+#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == 0) { val1 = 0.0f; }
+ else { val1 = R1[(i - 1)*dimY + (j)]; }
+ if (j == 0) { val2 = 0.0f; }
+ else { val2 = R2[(i)*dimY + (j - 1)]; }
+ D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
+ }
+ }
+ return *D;
+}
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2, multip;
+ int i, j;
+ multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)];
+ if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)];
+ P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
+ P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
+ }
+ }
+ return 1;
+}
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
+{
+ float val1, val2, denom;
+ int i, j;
+ if (methTV == 0) {
+ /* isotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,denom)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2);
+ if (denom > 1) {
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom);
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom);
+ }
+ }
+ }
+ }
+ else {
+ /* anisotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ val1 = fabs(P1[(i)*dimY + (j)]);
+ val2 = fabs(P2[(i)*dimY + (j)]);
+ if (val1 < 1.0f) { val1 = 1.0f; }
+ if (val2 < 1.0f) { val2 = 1.0f; }
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1;
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2;
+ }
+ }
+ }
+ return 1;
+}
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
+{
+ int i, j;
+ float multip;
+ multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
+ R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
+ }
+ }
+ return 1;
+}
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i, j, k;
+#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == 0) { val1 = 0.0f; }
+ else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; }
+ if (j == 0) { val2 = 0.0f; }
+ else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; }
+ if (k == 0) { val3 = 0.0f; }
+ else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; }
+ D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
+ }
+ }
+ }
+ return *D;
+}
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3, multip;
+ int i, j, k;
+ multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)];
+ if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)];
+ if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)];
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
+ }
+ }
+ }
+ return 1;
+}
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i, j, k;
+#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
+ if (val1 < 1.0f) { val1 = 1.0f; }
+ if (val2 < 1.0f) { val2 = 1.0f; }
+ if (val3 < 1.0f) { val3 = 1.0f; }
+
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3;
+ }
+ }
+ }
+ return 1;
+}
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
+{
+ int i, j, k;
+ float multip;
+ multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ }
+ }
+ }
+ return 1;
+}
+
+/* General Functions */
+/*****************************************************************/
+/* Copy Image */
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, B) private(j)
+ for (j = 0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
+ return *B;
+}
diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/main_func/regularizers_CPU/FGP_TV_core.h
new file mode 100644
index 0000000..8d6af3e
--- /dev/null
+++ b/main_func/regularizers_CPU/FGP_TV_core.h
@@ -0,0 +1,63 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+*
+* Input Parameters:
+* 1. Noisy image/volume [REQUIRED]
+* 2. lambda - regularization parameter [REQUIRED]
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon: tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* [1] Filtered/regularized image
+* [2] last function value
+*
+* Example of image denoising:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); % adding noise
+* u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+*
+* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* This function is based on the Matlab's code and paper by
+* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+*
+* D. Kazantsev, 2016-17
+*
+*/
+
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c
index 0aed31e..6b50d33 100644
--- a/main_func/regularizers_CPU/LLT_model.c
+++ b/main_func/regularizers_CPU/LLT_model.c
@@ -1,49 +1,25 @@
-#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
-
-#define EPS 0.01
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
-/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
- *
- * Input Parameters:
- * 1. U0 - origanal noise image/volume
- * 2. lambda - regularization parameter
- * 3. tau - time-step for explicit scheme
- * 4. iter - iterations number
- * 5. epsil - tolerance constant (to terminate earlier)
- * 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
- *
- * Output:
- * Filtered/regularized image
- *
- * Example:
- * figure;
- * Im = double(imread('lena_gray_256.tif'))/255; % loading image
- * u0 = Im + .03*randn(size(Im)); % adding noise
- * [Den] = LLT_model(single(u0), 10, 0.1, 1);
- *
- *
- * to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
- * References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
- *
- * 28.11.16/Harwell
- */
-/* 2D functions */
-float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
-float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
-float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
-float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
-float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
-float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
+#include "mex.h"
+#include "LLT_model_core.h"
-float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
void mexFunction(
int nlhs, mxArray *plhs[],
@@ -165,267 +141,3 @@ void mexFunction(
printf("HO iterations stopped at iteration: %i\n", ll);
}
}
-
-float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float dxx, dyy, denom_xx, denom_yy;
-#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
- dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
-
- D1[i*dimY + j] = dxx/denom_xx;
- D2[i*dimY + j] = dyy/denom_yy;
- }}
- return 1;
-}
-float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, i_p, i_m, j_m, j_p;
- float div, dxx, dyy;
-#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
-
- dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
- dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
-
- div = dxx + dyy;
-
- U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
- }}
- return *U0;
-}
-
-float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
-#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for(j=0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for(k=0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-
- dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
- dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
- dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-
- denom_xx = fabs(dxx) + EPS;
- denom_yy = fabs(dyy) + EPS;
- denom_zz = fabs(dzz) + EPS;
-
- D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
- D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
- D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
-
- }}}
- return 1;
-}
-
-float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
- float div, dxx, dyy, dzz;
-#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i_p = i + 1; if (i_p == dimX) i_p = i - 1;
- i_m = i - 1; if (i_m < 0) i_m = i + 1;
- for(j=0; j<dimY; j++) {
- j_p = j + 1; if (j_p == dimY) j_p = j - 1;
- j_m = j - 1; if (j_m < 0) j_m = j + 1;
- for(k=0; k<dimZ; k++) {
- k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
- k_m = k - 1; if (k_m < 0) k_m = k + 1;
-// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
-// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-
- dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
- dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
- dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
-
- if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
- div = dxx + dyy + dzz;
-
-// if (switcher == 1) {
- // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
- //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
-// div = dzz + dzz2;
-// }
-
-// dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
-// dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
-// div = dzz + dzz2;
-
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
- }}}
- return *U0;
- }
-
-// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
-// {
-// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
-// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
-// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
-// for(i=0; i<dimX; i++) {
-// /* symmetric boundary conditions (Neuman) */
-// i_p = i + 1; if (i_p == dimX) i_p = i - 1;
-// i_m = i - 1; if (i_m < 0) i_m = i + 1;
-// for(j=0; j<dimY; j++) {
-// j_p = j + 1; if (j_p == dimY) j_p = j - 1;
-// j_m = j - 1; if (j_m < 0) j_m = j + 1;
-// for(k=0; k<dimZ; k++) {
-// k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
-// k_m = k - 1; if (k_m < 0) k_m = k + 1;
-// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
-// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
-//
-// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
-// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
-// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
-// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];
-//
-// denom_xx = fabs(dxx) + EPS;
-// denom_yy = fabs(dyy) + EPS;
-// denom_zz = fabs(dzz) + EPS;
-// denom_zz2 = fabs(dzz2) + EPS;
-//
-// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
-// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
-// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
-// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;
-// }}}
-// return 1;
-// }
-
-float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i,j,k,i1,j1,i2,j2,windowSize;
- float val1, val2,thresh_val,maxval;
- windowSize = 1;
- thresh_val = 0.0001; /*thresh_val = 0.0035;*/
-
- /* normalize volume first */
- maxval = 0.0f;
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
- }}}
-
- if (maxval != 0.0f) {
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j]/maxval;
- }}}
- }
- else {
- printf("%s \n", "Maximum value is zero!");
- return 0;
- }
-
- #pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
-
- Map[dimX*dimY*k + i*dimY + j] = 0;
-// Map2[dimX*dimY*k + i*dimY + j] = 0;
-
- val1 = 0.0f; val2 = 0.0f;
- for(i1=-windowSize; i1<=windowSize; i1++) {
- for(j1=-windowSize; j1<=windowSize; j1++) {
- i2 = i+i1;
- j2 = j+j1;
-
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (k == 0) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
-// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- else if (k == dimZ-1) {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
-// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
- }
-// else if (k == 1) {
-// val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
-// val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
-// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
-// }
-// else if (k == dimZ-2) {
-// val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
-// val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
-// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
-// }
- else {
- val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
- val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
-// val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
-// val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
- }
- }
- }}
-
- val1 = 0.111f*val1; val2 = 0.111f*val2;
-// val3 = 0.111f*val3; val4 = 0.111f*val4;
- if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
-// if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;
- }}}
- return 1;
-}
-
-float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
-{
- int i, j, k, i1, j1, i2, j2, counter;
- #pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
-
- counter=0;
- for(i1=-3; i1<=3; i1++) {
- for(j1=-3; j1<=3; j1++) {
- i2 = i+i1;
- j2 = j+j1;
- if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
- if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
- }
- }}
- if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
- }}}
- return *Map;
-}
-
- /* Copy Image */
- float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
- {
- int j;
-#pragma omp parallel for shared(A, U) private(j)
- for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
- return *U;
- }
- /*********************3D *********************/ \ No newline at end of file
diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/main_func/regularizers_CPU/LLT_model_core.c
new file mode 100644
index 0000000..3098269
--- /dev/null
+++ b/main_func/regularizers_CPU/LLT_model_core.c
@@ -0,0 +1,300 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "LLT_model_core.h"
+
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
+{
+ int i, j, i_p, i_m, j_m, j_p;
+ float dxx, dyy, denom_xx, denom_yy;
+#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+ dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
+ dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
+
+ denom_xx = fabs(dxx) + EPS;
+ denom_yy = fabs(dyy) + EPS;
+
+ D1[i*dimY + j] = dxx / denom_xx;
+ D2[i*dimY + j] = dyy / denom_yy;
+ }
+ }
+ return 1;
+}
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i, j, i_p, i_m, j_m, j_p;
+ float div, dxx, dyy;
+#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+ dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
+ dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
+
+ div = dxx + dyy;
+
+ U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
+ }
+ }
+ return *U0;
+}
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+ float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
+#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
+ for (i = 0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ for (j = 0; j<dimY; j++) {
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+ for (k = 0; k<dimZ; k++) {
+ k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+ k_m = k - 1; if (k_m < 0) k_m = k + 1;
+
+ dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+ dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+ dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
+
+ denom_xx = fabs(dxx) + EPS;
+ denom_yy = fabs(dyy) + EPS;
+ denom_zz = fabs(dzz) + EPS;
+
+ D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx;
+ D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy;
+ D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz;
+
+ }
+ }
+ }
+ return 1;
+}
+
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+ float div, dxx, dyy, dzz;
+#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
+ for (i = 0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ for (j = 0; j<dimY; j++) {
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+ for (k = 0; k<dimZ; k++) {
+ k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+ k_m = k - 1; if (k_m < 0) k_m = k + 1;
+ // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+ // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
+
+ dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
+ dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
+ dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+
+ if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
+ div = dxx + dyy + dzz;
+
+ // if (switcher == 1) {
+ // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
+ //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
+ // div = dzz + dzz2;
+ // }
+
+ // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+ // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
+ // div = dzz + dzz2;
+
+ U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
+ }
+ }
+ }
+ return *U0;
+}
+
+// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
+// {
+// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
+// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
+// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
+// for(i=0; i<dimX; i++) {
+// /* symmetric boundary conditions (Neuman) */
+// i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+// i_m = i - 1; if (i_m < 0) i_m = i + 1;
+// for(j=0; j<dimY; j++) {
+// j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+// j_m = j - 1; if (j_m < 0) j_m = j + 1;
+// for(k=0; k<dimZ; k++) {
+// k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+// k_m = k - 1; if (k_m < 0) k_m = k + 1;
+// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
+//
+// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
+// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];
+//
+// denom_xx = fabs(dxx) + EPS;
+// denom_yy = fabs(dyy) + EPS;
+// denom_zz = fabs(dzz) + EPS;
+// denom_zz2 = fabs(dzz2) + EPS;
+//
+// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
+// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
+// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
+// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;
+// }}}
+// return 1;
+// }
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i1, j1, i2, j2, windowSize;
+ float val1, val2, thresh_val, maxval;
+ windowSize = 1;
+ thresh_val = 0.0001; /*thresh_val = 0.0035;*/
+
+ /* normalize volume first */
+ maxval = 0.0f;
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
+ }
+ }
+ }
+
+ if (maxval != 0.0f) {
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval;
+ }
+ }
+ }
+ }
+ else {
+ printf("%s \n", "Maximum value is zero!");
+ return 0;
+ }
+
+#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+
+ Map[dimX*dimY*k + i*dimY + j] = 0;
+ // Map2[dimX*dimY*k + i*dimY + j] = 0;
+
+ val1 = 0.0f; val2 = 0.0f;
+ for (i1 = -windowSize; i1 <= windowSize; i1++) {
+ for (j1 = -windowSize; j1 <= windowSize; j1++) {
+ i2 = i + i1;
+ j2 = j + j1;
+
+ if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+ if (k == 0) {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ }
+ else if (k == dimZ - 1) {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ }
+ // else if (k == 1) {
+ // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
+ // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ // }
+ // else if (k == dimZ-2) {
+ // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
+ // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ // }
+ else {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+ val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ }
+ }
+ }
+ }
+
+ val1 = 0.111f*val1; val2 = 0.111f*val2;
+ // val3 = 0.111f*val3; val4 = 0.111f*val4;
+ if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
+ // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;
+ }
+ }
+ }
+ return 1;
+}
+
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i1, j1, i2, j2, counter;
+#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+
+ counter = 0;
+ for (i1 = -3; i1 <= 3; i1++) {
+ for (j1 = -3; j1 <= 3; j1++) {
+ i2 = i + i1;
+ j2 = j + j1;
+ if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+ if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
+ }
+ }
+ }
+ if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
+ }
+ }
+ }
+ return *Map;
+}
+
+/* Copy Image */
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, U) private(j)
+ for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
+ return *U;
+}
+/*********************3D *********************/ \ No newline at end of file
diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/main_func/regularizers_CPU/LLT_model_core.h
new file mode 100644
index 0000000..ef8803d
--- /dev/null
+++ b/main_func/regularizers_CPU/LLT_model_core.h
@@ -0,0 +1,64 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+#define EPS 0.01
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
+*
+* Input Parameters:
+* 1. U0 - origanal noise image/volume
+* 2. lambda - regularization parameter
+* 3. tau - time-step for explicit scheme
+* 4. iter - iterations number
+* 5. epsil - tolerance constant (to terminate earlier)
+* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* [Den] = LLT_model(single(u0), 10, 0.1, 1);
+*
+*
+* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
+*
+* 28.11.16/Harwell
+*/
+/* 2D functions */
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
+
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/main_func/regularizers_CPU/PatchBased_Regul.c
index 1ed29d4..24ee210 100644
--- a/main_func/regularizers_CPU/PatchBased_Regul.c
+++ b/main_func/regularizers_CPU/PatchBased_Regul.c
@@ -1,12 +1,25 @@
-#define _USE_MATH_DEFINES
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
+#include "PatchBased_Regul_core.h"
+
/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
@@ -41,9 +54,6 @@
* Harwell, UK
*/
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
-float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
void mexFunction(
int nlhs, mxArray *plhs[],
@@ -125,171 +135,4 @@ void mexFunction(
switchpad_crop = 1; /*cropping*/
pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
} /*end else ndims*/
-}
-
-/*2D version*/
-float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
-{
- int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
- Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
- count = count + 1;
- }} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
-
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
-
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- i2 = i1+i_l; j2 = j1+j_l;
-
- i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
- count = count + 1;
- }}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}
-
- value += A[i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
- }} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
- }
- }} /*main loop*/
- return (*B);
- free(Eucl_Vec);
-}
-
-/*3D version*/
- float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
- {
- int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
- float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
-
- /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
- SimilW_full = 2*SimilW + 1; /* the full similarity window size */
- h2 = h*h;
- denh2 = 1/(2*h2);
-
- /*Gaussian kernel */
- Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
- count = 0;
- for(i_n=-SimilW; i_n<=SimilW; i_n++) {
- for(j_n=-SimilW; j_n<=SimilW; j_n++) {
- for(k_n=-SimilW; k_n<=SimilW; k_n++) {
- Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
- count = count + 1;
- }}} /*main neighb loop */
-
- /*The NLM code starts here*/
- /* setting OMP here */
- #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
- /* take all elements around the pixel of interest */
- /* Massive Search window loop */
- Weight_norm = 0; value = 0.0;
- for(i_m=-SearchW; i_m<=SearchW; i_m++) {
- for(j_m=-SearchW; j_m<=SearchW; j_m++) {
- for(k_m=-SearchW; k_m<=SearchW; k_m++) {
- /*checking boundaries*/
- i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
-
- WeightGlob = 0.0;
- /* if inside the searching window */
- for(i_l=-SimilW; i_l<=SimilW; i_l++) {
- for(j_l=-SimilW; j_l<=SimilW; j_l++) {
- for(k_l=-SimilW; k_l<=SimilW; k_l++) {
- i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
-
- i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
-
- count = 0; normsum = 0.0;
- for(i_p=-SimilW; i_p<=SimilW; i_p++) {
- for(j_p=-SimilW; j_p<=SimilW; j_p++) {
- for(k_p=-SimilW; k_p<=SimilW; k_p++) {
- i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
- normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
- count = count + 1;
- }}}
- if (normsum != 0) Weight = (exp(-normsum*denh2));
- else Weight = 0.0;
- WeightGlob += Weight;
- }}}
- value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
- Weight_norm += WeightGlob;
-
- }}} /*search window loop end*/
-
- /* the final loop to average all values in searching window with weights */
- denom = 1 + lambda*Weight_norm;
- B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
- }
- }}} /*main loop*/
- free(Eucl_Vec);
- return *B;
-}
-
-float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
-{
- /* padding-cropping function */
- int i,j,k;
- if (NewSizeZ > 1) {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- for (k=0; k < NewSizeZ; k++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
- if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
- }
- }}}
- }
- else {
- for (i=0; i < NewSizeX; i++) {
- for (j=0; j < NewSizeY; j++) {
- if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
- if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
- else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
- }
- }}
- }
- return *Ap;
-} \ No newline at end of file
+} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/main_func/regularizers_CPU/PatchBased_Regul_core.c
new file mode 100644
index 0000000..6f0a48d
--- /dev/null
+++ b/main_func/regularizers_CPU/PatchBased_Regul_core.c
@@ -0,0 +1,220 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "PatchBased_Regul_core.h"
+
+/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
+* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+*
+* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+*
+* Input Parameters (mandatory):
+* 1. Image (2D or 3D)
+* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+* 4. h - parameter for the PB penalty function
+* 5. lambda - regularization parameter
+
+* Output:
+* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+*
+* Quick 2D denoising example in Matlab:
+Im = double(imread('lena_gray_256.tif'))/255; % loading image
+u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+*
+* Please see more tests in a file:
+TestTemporalSmoothing.m
+
+*
+* Matlab + C/mex compilers needed
+* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+*
+* D. Kazantsev *
+* 02/07/2014
+* Harwell, UK
+*/
+
+/*2D version*/
+float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
+{
+ int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
+ float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
+
+ /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+ h2 = h*h;
+ denh2 = 1/(2*h2);
+
+ /*Gaussian kernel */
+ Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
+ Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
+ count = count + 1;
+ }} /*main neighb loop */
+
+ /*The NLM code starts here*/
+ /* setting OMP here */
+ #pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
+
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
+
+ /* Massive Search window loop */
+ Weight_norm = 0; value = 0.0;
+ for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+ for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+ /*checking boundaries*/
+ i1 = i+i_m; j1 = j+j_m;
+
+ WeightGlob = 0.0;
+ /* if inside the searching window */
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ i2 = i1+i_l; j2 = j1+j_l;
+
+ i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
+
+ count = 0; normsum = 0.0;
+ for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+ for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+ i5 = i2 + i_p; j5 = j2 + j_p;
+ normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
+ count = count + 1;
+ }}
+ if (normsum != 0) Weight = (exp(-normsum*denh2));
+ else Weight = 0.0;
+ WeightGlob += Weight;
+ }}
+
+ value += A[i1*dimY+j1]*WeightGlob;
+ Weight_norm += WeightGlob;
+ }} /*search window loop end*/
+
+ /* the final loop to average all values in searching window with weights */
+ denom = 1 + lambda*Weight_norm;
+ B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
+ }
+ }} /*main loop*/
+ return (*B);
+ free(Eucl_Vec);
+}
+
+/*3D version*/
+ float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
+ {
+ int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
+ float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
+
+ /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+ h2 = h*h;
+ denh2 = 1/(2*h2);
+
+ /*Gaussian kernel */
+ Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ for(k_n=-SimilW; k_n<=SimilW; k_n++) {
+ Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
+ count = count + 1;
+ }}} /*main neighb loop */
+
+ /*The NLM code starts here*/
+ /* setting OMP here */
+ #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
+ /* take all elements around the pixel of interest */
+ /* Massive Search window loop */
+ Weight_norm = 0; value = 0.0;
+ for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+ for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+ for(k_m=-SearchW; k_m<=SearchW; k_m++) {
+ /*checking boundaries*/
+ i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
+
+ WeightGlob = 0.0;
+ /* if inside the searching window */
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ for(k_l=-SimilW; k_l<=SimilW; k_l++) {
+ i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
+
+ i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
+
+ count = 0; normsum = 0.0;
+ for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+ for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+ for(k_p=-SimilW; k_p<=SimilW; k_p++) {
+ i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
+ normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
+ count = count + 1;
+ }}}
+ if (normsum != 0) Weight = (exp(-normsum*denh2));
+ else Weight = 0.0;
+ WeightGlob += Weight;
+ }}}
+ value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
+ Weight_norm += WeightGlob;
+
+ }}} /*search window loop end*/
+
+ /* the final loop to average all values in searching window with weights */
+ denom = 1 + lambda*Weight_norm;
+ B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
+ }
+ }}} /*main loop*/
+ free(Eucl_Vec);
+ return *B;
+}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+ /* padding-cropping function */
+ int i,j,k;
+ if (NewSizeZ > 1) {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ for (k=0; k < NewSizeZ; k++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
+ if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+ }
+ }}}
+ }
+ else {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
+ if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+ }
+ }}
+ }
+ return *Ap;
+} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/main_func/regularizers_CPU/PatchBased_Regul_core.h
new file mode 100644
index 0000000..b83cf10
--- /dev/null
+++ b/main_func/regularizers_CPU/PatchBased_Regul_core.h
@@ -0,0 +1,64 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#define _USE_MATH_DEFINES
+
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
+* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+*
+* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+*
+* Input Parameters (mandatory):
+* 1. Image (2D or 3D)
+* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+* 4. h - parameter for the PB penalty function
+* 5. lambda - regularization parameter
+
+* Output:
+* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+*
+* Quick 2D denoising example in Matlab:
+Im = double(imread('lena_gray_256.tif'))/255; % loading image
+u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+*
+* Please see more tests in a file:
+TestTemporalSmoothing.m
+
+*
+* Matlab + C/mex compilers needed
+* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+*
+* D. Kazantsev *
+* 02/07/2014
+* Harwell, UK
+*/
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
+float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
+float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
diff --git a/main_func/regularizers_CPU/SplitBregman_TV.c b/main_func/regularizers_CPU/SplitBregman_TV.c
index f143aa6..0dc638d 100644
--- a/main_func/regularizers_CPU/SplitBregman_TV.c
+++ b/main_func/regularizers_CPU/SplitBregman_TV.c
@@ -1,10 +1,24 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
+#include "SplitBregman_TV_core.h"
/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
*
@@ -30,16 +44,6 @@
* D. Kazantsev, 2016*
*/
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
-float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
-
-float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
void mexFunction(
int nlhs, mxArray *plhs[],
@@ -171,229 +175,4 @@ void mexFunction(
}
printf("SB iterations stopped at iteration: %i\n", ll);
}
-}
-
-/* 2D-case related Functions */
-/*****************************************************************/
-float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
-{
- float sum, normConst;
- int i,j,i1,i2,j1,j2;
- normConst = 1.0f/(mu + 4.0f*lambda);
-
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
- for(i=0; i<dimX; i++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
-
- sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
- sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
- sum *= lambda;
- sum += mu*A[(i)*dimY + (j)];
- U[(i)*dimY + (j)] = normConst*sum;
- }}
- return *U;
-}
-
-float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, val22, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
-
- if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
- if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
-
- }}
- return 1;
-}
-float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
-{
- int i,j,i1,j1;
- float val1, val11, val2, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-
-#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
- val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
-
- denom = sqrt(val1*val1 + val2*val2);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[(i)*dimY + (j)] = val11*(val1/denom);
- Dy[(i)*dimY + (j)] = val11*(val2/denom);
- }
- else {
- Dx[(i)*dimY + (j)] = 0;
- Dy[(i)*dimY + (j)] = 0;
- }
- }}
- return 1;
-}
-float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
-{
- int i,j,i1,j1;
-#pragma omp parallel for shared(U) private(i,j,i1,j1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
-
- Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
- By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
- }}
- return 1;
-}
-
-
-/* 3D-case related Functions */
-/*****************************************************************/
-float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
-{
- float normConst, d_val, b_val, sum;
- int i,j,i1,i2,j1,j2,k,k1,k2;
- normConst = 1.0f/(mu + 6.0f*lambda);
-#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- i2 = i-1; if (i2 < 0) i2 = i+1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- j2 = j-1; if (j2 < 0) j2 = j+1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
- k2 = k-1; if (k2 < 0) k2 = k+1;
-
- d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
- b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
- sum = d_val + b_val;
- sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
- sum *= lambda;
- sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
- U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
- }}}
- return *U;
-}
-
-float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val22, val3, val33, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
- val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
- val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
-
- if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
- if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
- if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
-
- }}}
- return 1;
-}
-float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
-{
- int i,j,i1,j1,k,k1,index;
- float val1, val11, val2, val3, denom, denom_lam;
- denom_lam = 1.0f/lambda;
-#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- index = (dimX*dimY)*k + (i)*dimY + (j);
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
- val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
- val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
-
- denom = sqrt(val1*val1 + val2*val2 + val3*val3);
-
- val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
-
- if (denom != 0.0f) {
- Dx[index] = val11*(val1/denom);
- Dy[index] = val11*(val2/denom);
- Dz[index] = val11*(val3/denom);
- }
- else {
- Dx[index] = 0;
- Dy[index] = 0;
- Dz[index] = 0;
- }
- }}}
- return 1;
-}
-float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
-{
- int i,j,k,i1,j1,k1;
-#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- i1 = i+1; if (i1 == dimX) i1 = i-1;
- j1 = j+1; if (j1 == dimY) j1 = j-1;
- k1 = k+1; if (k1 == dimZ) k1 = k-1;
-
- Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
- By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
- Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
-
- }}}
- return 1;
-}
-/* General Functions */
-/*****************************************************************/
-/* Copy Image */
-float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, B) private(j)
- for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
- return *B;
} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/main_func/regularizers_CPU/SplitBregman_TV_core.c
new file mode 100644
index 0000000..26ad5b1
--- /dev/null
+++ b/main_func/regularizers_CPU/SplitBregman_TV_core.c
@@ -0,0 +1,270 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "SplitBregman_TV_core.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
+{
+ float sum, normConst;
+ int i,j,i1,i2,j1,j2;
+ normConst = 1.0f/(mu + 4.0f*lambda);
+
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
+ for(i=0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
+
+ sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
+ sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
+ sum *= lambda;
+ sum += mu*A[(i)*dimY + (j)];
+ U[(i)*dimY + (j)] = normConst*sum;
+ }}
+ return *U;
+}
+
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+ int i,j,i1,j1;
+ float val1, val11, val2, val22, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+ val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+
+ if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
+ if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
+
+ }}
+ return 1;
+}
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+ int i,j,i1,j1;
+ float val1, val11, val2, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+ val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+
+ denom = sqrt(val1*val1 + val2*val2);
+
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
+ if (denom != 0.0f) {
+ Dx[(i)*dimY + (j)] = val11*(val1/denom);
+ Dy[(i)*dimY + (j)] = val11*(val2/denom);
+ }
+ else {
+ Dx[(i)*dimY + (j)] = 0;
+ Dy[(i)*dimY + (j)] = 0;
+ }
+ }}
+ return 1;
+}
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
+{
+ int i,j,i1,j1;
+#pragma omp parallel for shared(U) private(i,j,i1,j1)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
+ By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
+ }}
+ return 1;
+}
+
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
+{
+ float normConst, d_val, b_val, sum;
+ int i,j,i1,i2,j1,j2,k,k1,k2;
+ normConst = 1.0f/(mu + 6.0f*lambda);
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+ k2 = k-1; if (k2 < 0) k2 = k+1;
+
+ d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
+ b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
+ sum = d_val + b_val;
+ sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
+ sum *= lambda;
+ sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
+ U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
+ }}}
+ return *U;
+}
+
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val22, val3, val33, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+ val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
+
+ if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
+ if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
+ if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
+
+ }}}
+ return 1;
+}
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val3, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ denom = sqrt(val1*val1 + val2*val2 + val3*val3);
+
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
+ if (denom != 0.0f) {
+ Dx[index] = val11*(val1/denom);
+ Dy[index] = val11*(val2/denom);
+ Dz[index] = val11*(val3/denom);
+ }
+ else {
+ Dx[index] = 0;
+ Dy[index] = 0;
+ Dz[index] = 0;
+ }
+ }}}
+ return 1;
+}
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
+{
+ int i,j,k,i1,j1,k1;
+#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
+ By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
+ Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
+
+ }}}
+ return 1;
+}
+/* General Functions */
+/*****************************************************************/
+/* Copy Image */
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, B) private(j)
+ for(j=0; j<dimX*dimY*dimZ; j++) B[j] = A[j];
+ return *B;
+} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/main_func/regularizers_CPU/SplitBregman_TV_core.h
new file mode 100644
index 0000000..ed9112c
--- /dev/null
+++ b/main_func/regularizers_CPU/SplitBregman_TV_core.h
@@ -0,0 +1,59 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
+
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c
index 41f8615..8bce18a 100644
--- a/main_func/regularizers_CPU/TGV_PD.c
+++ b/main_func/regularizers_CPU/TGV_PD.c
@@ -1,10 +1,24 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
#include "mex.h"
-#include <matrix.h>
-#include <math.h>
-#include <stdlib.h>
-#include <memory.h>
-#include <stdio.h>
-#include "omp.h"
/* C-OMP implementation of Primal-Dual denoising method for
* Total Generilized Variation (TGV)-L2 model (2D case only)
@@ -32,19 +46,6 @@
* 28.11.16/Harwell
*/
-/* 2D functions */
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
-float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
-float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
-/*3D functions*/
-float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma);
-
-float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
-float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
-
void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
@@ -183,171 +184,3 @@ void mexFunction(
// } /*end of iterations*/
// }
}
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
-#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
- if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
- }}
- return 1;
-}
-/*Projection onto convex set for P*/
-float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha1;
- if (grad_magn > 1.0) {
- P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
- P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/*Calculating dual variable Q (using forward differences)*/
-float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j;
- float q1, q2, q11, q22;
-#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1)
- { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- else {
- q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
- q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
- }
- if (j == dimY-1) {
- q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
- }
- else {
- q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
- q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
- }
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22));
- }}
- return 1;
-}
-
-float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
-{
- float grad_magn;
- int i,j;
-#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
- grad_magn = grad_magn/alpha0;
- if (grad_magn > 1.0) {
- Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
- Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
- Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
- }
- }}
- return 1;
-}
-/* Divergence and projection for P*/
-float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
-{
- int i,j;
- float P_v1, P_v2, div;
-#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- if (i == 0) P_v1 = (P1[i*dimY + (j)]);
- else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
- if (j == 0) P_v2 = (P2[i*dimY + (j)]);
- else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
- div = P_v1 + P_v2;
- U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
- }}
- return *U;
-}
-/*get updated solution U*/
-float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
-{
- int i;
-#pragma omp parallel for shared(U,U_old) private(i)
- for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
- return *U;
-}
-
-/*get update for V*/
-float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
-{
- int i,j;
- float q1, q11, q2, q22, div1, div2;
-#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == 0) {
- q1 = (Q1[i*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)]);
- }
- else {
- q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
- q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
- }
- if (j == 0) {
- q2 = (Q2[i*dimY + (j)]);
- q22 = (Q3[i*dimY + (j)]);
- }
- else {
- q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
- q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
- }
- div1 = q1 + q22;
- div2 = q2 + q11;
- V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
- V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
- }}
- return 1;
-}
-/* Copy Image */
-float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
-{
- int j;
-#pragma omp parallel for shared(A, U) private(j)
- for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
- return *U;
-}
-/*********************3D *********************/
-
-/*Calculating dual variable P (using forward differences)*/
-float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
-{
- int i,j,k;
-#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
- for(i=0; i<dimX; i++) {
- for(j=0; j<dimY; j++) {
- for(k=0; k<dimZ; k++) {
- /* symmetric boundary conditions (Neuman) */
- if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
- if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
- if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
- }}}
- return 1;
-} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/main_func/regularizers_CPU/TGV_PD_core.c
new file mode 100644
index 0000000..4c0427c
--- /dev/null
+++ b/main_func/regularizers_CPU/TGV_PD_core.c
@@ -0,0 +1,217 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume (2D)
+ * 2. lambda - regularization parameter
+ * 3. parameter to control first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of CP iterations
+ *
+ * Output:
+ * Filtered/regularized image
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .03*randn(size(Im)); % adding noise
+ * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+ *
+ * to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * References:
+ * K. Bredies "Total Generalized Variation"
+ *
+ * 28.11.16/Harwell
+ */
+
+
+
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j;
+#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
+ else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
+ if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
+ else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
+ }}
+ return 1;
+}
+/*Projection onto convex set for P*/
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
+{
+ float grad_magn;
+ int i,j;
+#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
+ grad_magn = grad_magn/alpha1;
+ if (grad_magn > 1.0) {
+ P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
+ P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
+ }
+ }}
+ return 1;
+}
+/*Calculating dual variable Q (using forward differences)*/
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j;
+ float q1, q2, q11, q22;
+#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1)
+ { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
+ q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
+ }
+ else {
+ q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
+ q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
+ }
+ if (j == dimY-1) {
+ q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
+ q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
+ }
+ else {
+ q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
+ q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
+ }
+ Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
+ Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
+ Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22));
+ }}
+ return 1;
+}
+
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
+{
+ float grad_magn;
+ int i,j;
+#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
+ grad_magn = grad_magn/alpha0;
+ if (grad_magn > 1.0) {
+ Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
+ Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
+ Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
+ }
+ }}
+ return 1;
+}
+/* Divergence and projection for P*/
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i,j;
+ float P_v1, P_v2, div;
+#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ if (i == 0) P_v1 = (P1[i*dimY + (j)]);
+ else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
+ if (j == 0) P_v2 = (P2[i*dimY + (j)]);
+ else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
+ div = P_v1 + P_v2;
+ U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
+ }}
+ return *U;
+}
+/*get updated solution U*/
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
+{
+ int i;
+#pragma omp parallel for shared(U,U_old) private(i)
+ for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
+ return *U;
+}
+
+/*get update for V*/
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
+{
+ int i,j;
+ float q1, q11, q2, q22, div1, div2;
+#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == 0) {
+ q1 = (Q1[i*dimY + (j)]);
+ q11 = (Q3[i*dimY + (j)]);
+ }
+ else {
+ q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
+ q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
+ }
+ if (j == 0) {
+ q2 = (Q2[i*dimY + (j)]);
+ q22 = (Q3[i*dimY + (j)]);
+ }
+ else {
+ q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
+ q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
+ }
+ div1 = q1 + q22;
+ div2 = q2 + q11;
+ V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
+ V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
+ }}
+ return 1;
+}
+/* Copy Image */
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, U) private(j)
+ for(j=0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
+ return *U;
+}
+/*********************3D *********************/
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j,k;
+#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
+ else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
+ if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
+ else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
+ if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
+ else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
+ }}}
+ return 1;
+} \ No newline at end of file
diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/main_func/regularizers_CPU/TGV_PD_core.h
new file mode 100644
index 0000000..e25ae68
--- /dev/null
+++ b/main_func/regularizers_CPU/TGV_PD_core.h
@@ -0,0 +1,64 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+* Total Generilized Variation (TGV)-L2 model (2D case only)
+*
+* Input Parameters:
+* 1. Noisy image/volume (2D)
+* 2. lambda - regularization parameter
+* 3. parameter to control first-order term (alpha1)
+* 4. parameter to control the second-order term (alpha0)
+* 5. Number of CP iterations
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+*
+* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* K. Bredies "Total Generalized Variation"
+*
+* 28.11.16/Harwell
+*/
+
+/* 2D functions */
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
+/*3D functions*/
+float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma);
+
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);