summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md34
1 files changed, 21 insertions, 13 deletions
diff --git a/Readme.md b/Readme.md
index 60c38ab..e73b4fb 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,8 +1,9 @@
# CCPi-Regularisation Toolkit (CCPi-RGL)
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem more well-posed.
-CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The modules especially suited for IIR, however,
-can also be used as image denoising iterative filters. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
+CCPi-RGL software consist of 2D/3D regularisation modules for single-channel and multi-channel reconstruction problems. The regularisation modules are well-suited for
+[splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), of ADMM or FISTA type. Furthermore,
+the toolkit can be used independently to solve image denoising problems. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
<div align="center">
<img src="docs/images/probl.png" height="225"><br>
@@ -10,7 +11,7 @@ can also be used as image denoising iterative filters. The core modules are writ
## Prerequisites:
- * MATLAB (www.mathworks.com/products/matlab/) OR
+ * [MATLAB](www.mathworks.com/products/matlab/) OR
* Python (tested ver. 3.5); Cython
* C compilers
* nvcc (CUDA SDK) compilers
@@ -18,13 +19,14 @@ can also be used as image denoising iterative filters. The core modules are writ
## Package modules (regularisers):
### Single-channel
-1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D CPU/GPU]; (Ref. 1)
-2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D CPU/GPU]; (Ref. 2)
-3. Split-Bregman (SB) Total Variation [2D/3D CPU/GPU]; (Ref. 4)
+1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*)
+2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)
+3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *4*)
+4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *6*)
### Multi-channel
-1. Fast-Gradient-Projection (FGP) Directional Total Variation [2D/3D CPU/GPU]; (Ref. 3,2)
-2. Total Nuclear Variation (TNV) penalty [2D+channels CPU]; (Ref. 5)
+1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,2*)
+2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *5*)
## Installation:
@@ -48,11 +50,17 @@ can also be used as image denoising iterative filters. The core modules are writ
```
### References:
-1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.
-2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.
-3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.
-4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.
-5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
+*1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.*
+
+*2. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), pp.2419-2434.*
+
+*3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.*
+
+*4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.*
+
+*5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.*
+
+*6. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.*
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)