diff options
Diffstat (limited to 'Wrappers/Python/demos')
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_inpainters.py | 192 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 43 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers.py | 18 |
3 files changed, 237 insertions, 16 deletions
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py new file mode 100644 index 0000000..3b4191b --- /dev/null +++ b/Wrappers/Python/demos/demo_cpu_inpainters.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Demonstration of CPU inpainters +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from scipy import io +from ccpi.filters.regularisers import NDF_INP, NVM_INP +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'maskData': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +# read sinogram and the mask +filename = os.path.join(".." , ".." , ".." , "data" ,"SinoInpaint.mat") +sino = io.loadmat(filename) +sino_full = sino.get('Sinogram') +Mask = sino.get('Mask') +[angles_dim,detectors_dim] = sino_full.shape +sino_full = sino_full/np.max(sino_full) +#apply mask to sinogram +sino_cut = sino_full*(1-Mask) +#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32') +#sino_cut_new = sino_cut.copy(order='c') +#sino_cut_new[:] = sino_cut[:] +sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32); +#mask = np.zeros((angles_dim,detectors_dim),'uint8') +#mask =Mask.copy(order='c') +#mask[:] = Mask[:] +mask = np.ascontiguousarray(Mask, dtype=np.uint8); + +plt.figure(1) +plt.subplot(121) +plt.imshow(sino_cut_new,vmin=0.0, vmax=1) +plt.title('Missing Data sinogram') +plt.subplot(122) +plt.imshow(mask) +plt.title('Mask') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Inpainting using linear diffusion (2D)__") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Performance of linear inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':5000,\ + 'edge_parameter':0,\ + 'number_of_iterations' :5000 ,\ + 'time_marching_parameter':0.000075,\ + 'penalty_type':0 + } + +start_time = timeit.default_timer() +ndf_inp_linear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_linear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_linear, cmap="gray") +plt.title('{}'.format('Linear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_Inpainting using nonlinear diffusion (2D)_") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':80,\ + 'edge_parameter':0.00009,\ + 'number_of_iterations' :1500 ,\ + 'time_marching_parameter':0.000008,\ + 'penalty_type':1 + } + +start_time = timeit.default_timer() +ndf_inp_nonlinear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_nonlinear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray") +plt.title('{}'.format('Nonlinear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Inpainting using nonlocal vertical marching") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of NVM inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut,cmap="gray") + +# set parameters +pars = {'algorithm' : NVM_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'SW_increment': 1,\ + 'number_of_iterations' : 150 + } + +start_time = timeit.default_timer() +(nvm_inp, mask_upd) = NVM_INP(pars['input'], + pars['maskData'], + pars['SW_increment'], + pars['number_of_iterations']) + +rms = rmse(sino_full, nvm_inp) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(nvm_inp, cmap="gray") +plt.title('{}'.format('Nonlocal Vertical Marching inpainting results')) +#%% diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 3567f91..986e3e9 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -44,13 +44,31 @@ u0 = Im + np.random.normal(loc = 0 , u_ref = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) - +(N,M) = np.shape(u0) # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') u_ref = u_ref.astype('float32') - +# change dims to check that modules work with non-squared images +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" +#%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________ROF-TV (2D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -288,7 +306,6 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") plt.title('{}'.format('CPU results')) - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("__________Total nuclear Variation__________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -301,9 +318,8 @@ a.set_title('Noisy Image') imgplot = plt.imshow(u0,cmap="gray") channelsNo = 5 -N = 512 -noisyVol = np.zeros((channelsNo,N,N),dtype='float32') -idealVol = np.zeros((channelsNo,N,N),dtype='float32') +noisyVol = np.zeros((channelsNo,N,M),dtype='float32') +idealVol = np.zeros((channelsNo,N,M),dtype='float32') for i in range (channelsNo): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) @@ -344,25 +360,19 @@ plt.title('{}'.format('CPU results')) # Uncomment to test 3D regularisation performance #%% """ -N = 512 slices = 20 - -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 perc = 0.05 -noisyVol = np.zeros((slices,N,N),dtype='float32') -noisyRef = np.zeros((slices,N,N),dtype='float32') -idealVol = np.zeros((slices,N,N),dtype='float32') +noisyVol = np.zeros((slices,N,M),dtype='float32') +noisyRef = np.zeros((slices,N,M),dtype='float32') +idealVol = np.zeros((slices,N,M),dtype='float32') for i in range (slices): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) idealVol[i,:,:] = Im + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -403,6 +413,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using ROF-TV')) + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index b873700..f3ed50c 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -44,10 +44,28 @@ u0 = Im + np.random.normal(loc = 0 , u_ref = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) +(N,M) = np.shape(u0) # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') u_ref = u_ref.astype('float32') +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("____________ROF-TV regulariser_____________") |