summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx35
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx39
2 files changed, 57 insertions, 17 deletions
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 7d57ed1..11a0617 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -22,7 +22,7 @@ cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar,
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);
cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
@@ -202,12 +202,8 @@ def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip
return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,
iterations, LipshitzConst)
elif inputData.ndim == 3:
- shape = inputData.shape
- out = inputData.copy()
- for i in range(shape[0]):
- out[i,:,:] = TGV_2D(inputData[i,:,:], regularisation_parameter,
- alpha1, alpha0, iterations, LipshitzConst)
- return out
+ return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,
+ iterations, LipshitzConst)
def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
float regularisation_parameter,
@@ -229,7 +225,30 @@ def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
alpha0,
iterationsNumb,
LipshitzConst,
- dims[1],dims[0])
+ dims[1],dims[0],1)
+ return outputData
+def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run TGV iterations for 3D data */
+ TGV_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[2], dims[1], dims[0])
return outputData
#***************************************************************#
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index 47a6149..b52f669 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -23,7 +23,7 @@ CUDAErrorMessage = 'CUDA error'
cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z);
-cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY);
+cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ);
cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z);
cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z);
cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
@@ -102,12 +102,7 @@ def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, Lip
if inputData.ndim == 2:
return TGV2D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
elif inputData.ndim == 3:
- shape = inputData.shape
- out = inputData.copy()
- for i in range(shape[0]):
- out[i,:,:] = TGV2D(inputData[i,:,:], regularisation_parameter,
- alpha1, alpha0, iterations, LipshitzConst)
- return out
+ return TGV3D(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst)
# Directional Total-variation Fast-Gradient-Projection (FGP)
def dTV_FGP_GPU(inputData,
refdata,
@@ -393,7 +388,6 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
raise ValueError(CUDAErrorMessage);
-
#***************************************************************#
#***************** Total Generalised Variation *****************#
#***************************************************************#
@@ -417,11 +411,38 @@ def TGV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
alpha0,
iterationsNumb,
LipshitzConst,
- dims[1],dims[0])==0):
+ dims[1],dims[0], 1)==0):
return outputData
else:
raise ValueError(CUDAErrorMessage);
+def TGV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ float regularisation_parameter,
+ float alpha1,
+ float alpha0,
+ int iterationsNumb,
+ float LipshitzConst):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ if (TGV_GPU_main(
+ &inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ alpha1,
+ alpha0,
+ iterationsNumb,
+ LipshitzConst,
+ dims[2], dims[1], dims[0])==0):
+ return outputData;
+ else:
+ raise ValueError(CUDAErrorMessage);
+
#****************************************************************#
#**************Directional Total-variation FGP ******************#