summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m45
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m37
-rw-r--r--Wrappers/Matlab/mex_compile/compileCPU_mex.m5
-rw-r--r--Wrappers/Matlab/mex_compile/compileGPU_mex.m6
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c2
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~91
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c113
-rw-r--r--Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp111
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py29
-rw-r--r--Wrappers/Python/conda-recipe/run_test.py (renamed from Wrappers/Python/test/run_test.py)0
-rw-r--r--Wrappers/Python/demos/demo_cpu_regularisers.py127
-rw-r--r--Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py101
-rw-r--r--Wrappers/Python/demos/demo_gpu_regularisers.py123
-rw-r--r--Wrappers/Python/setup-regularisers.py.in1
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx71
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx98
-rw-r--r--Wrappers/Python/test/__pycache__/metrics.cpython-35.pycbin823 -> 0 bytes
17 files changed, 834 insertions, 126 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
index 71082e7..dc49d9c 100644
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -1,5 +1,6 @@
% Volume (3D) denoising demo using CCPi-RGL
-
+clear
+close all
addpath('../mex_compile/installed');
addpath('../../../data/');
@@ -14,31 +15,65 @@ vol3D(vol3D < 0) = 0;
figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
%%
-fprintf('Denoise using ROF-TV model (CPU) \n');
+fprintf('Denoise a volume using the ROF-TV model (CPU) \n');
lambda_rof = 0.03; % regularisation parameter
tau_rof = 0.0025; % time-marching constant
iter_rof = 300; % number of ROF iterations
tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc;
figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)');
%%
-% fprintf('Denoise using ROF-TV model (GPU) \n');
+% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
% lambda_rof = 0.03; % regularisation parameter
% tau_rof = 0.0025; % time-marching constant
% iter_rof = 300; % number of ROF iterations
% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc;
% figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)');
%%
-fprintf('Denoise using FGP-TV model (CPU) \n');
+fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
lambda_fgp = 0.03; % regularisation parameter
iter_fgp = 300; % number of FGP iterations
epsil_tol = 1.0e-05; % tolerance
tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc;
figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)');
%%
-% fprintf('Denoise using FGP-TV model (GPU) \n');
+% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
% lambda_fgp = 0.03; % regularisation parameter
% iter_fgp = 300; % number of FGP iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc;
% figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)');
%%
+fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
+
+% create another volume (reference) with slightly less amount of noise
+vol3D_ref = zeros(N,N,slices, 'single');
+for i = 1:slices
+vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
+end
+vol3D_ref(vol3D_ref < 0) = 0;
+% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+lambda_fgp = 0.03; % regularisation parameter
+iter_fgp = 300; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc;
+figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)');
+%%
+fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
+
+% create another volume (reference) with slightly less amount of noise
+vol3D_ref = zeros(N,N,slices, 'single');
+for i = 1:slices
+vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
+end
+vol3D_ref(vol3D_ref < 0) = 0;
+% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+lambda_fgp = 0.03; % regularisation parameter
+iter_fgp = 300; % number of FGP iterations
+epsil_tol = 1.0e-05; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc;
+figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)');
+%% \ No newline at end of file
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 7f87fbb..145f2ff 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -1,5 +1,6 @@
% Image (2D) denoising demo using CCPi-RGL
-
+clear
+close all
addpath('../mex_compile/installed');
addpath('../../../data/');
@@ -8,31 +9,55 @@ u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
figure; imshow(u0, [0 1]); title('Noisy image');
%%
-fprintf('Denoise using ROF-TV model (CPU) \n');
+fprintf('Denoise using the ROF-TV model (CPU) \n');
lambda_rof = 0.03; % regularisation parameter
tau_rof = 0.0025; % time-marching constant
iter_rof = 2000; % number of ROF iterations
tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc;
figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
%%
-% fprintf('Denoise using ROF-TV model (GPU) \n');
+% fprintf('Denoise using the ROF-TV model (GPU) \n');
% lambda_rof = 0.03; % regularisation parameter
% tau_rof = 0.0025; % time-marching constant
% iter_rof = 2000; % number of ROF iterations
% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc;
% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
%%
-fprintf('Denoise using FGP-TV model (CPU) \n');
+fprintf('Denoise using the FGP-TV model (CPU) \n');
lambda_fgp = 0.03; % regularisation parameter
iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
+epsil_tol = 1.0e-06; % tolerance
tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
%%
-% fprintf('Denoise using FGP-TV model (GPU) \n');
+% fprintf('Denoise using the FGP-TV model (GPU) \n');
% lambda_fgp = 0.03; % regularisation parameter
% iter_fgp = 1000; % number of FGP iterations
% epsil_tol = 1.0e-05; % tolerance
% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
%%
+fprintf('Denoise using the FGP-dTV model (CPU) \n');
+% create another image (reference) with slightly less amount of noise
+u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
+% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+
+lambda_fgp = 0.03; % regularisation parameter
+iter_fgp = 1000; % number of FGP iterations
+epsil_tol = 1.0e-06; % tolerance
+eta = 0.2; % Reference image gradient smoothing constant
+tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc;
+figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
+%%
+% fprintf('Denoise using the FGP-dTV model (GPU) \n');
+% % create another image (reference) with slightly less amount of noise
+% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
+% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
+%
+% lambda_fgp = 0.03; % regularisation parameter
+% iter_fgp = 1000; % number of FGP iterations
+% epsil_tol = 1.0e-06; % tolerance
+% eta = 0.2; % Reference image gradient smoothing constant
+% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc;
+% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
+%%
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
index 8da81ad..71f345a 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
@@ -11,7 +11,10 @@ movefile ROF_TV.mex* ../installed/
mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
movefile FGP_TV.mex* ../installed/
-delete ROF_TV_core* FGP_TV_core* utils.c utils.h CCPiDefines.h
+mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+movefile FGP_dTV.mex* ../installed/
+
+delete ROF_TV_core* FGP_TV_core* FGP_dTV_core* utils* CCPiDefines.h
fprintf('%s \n', 'All successfully compiled!');
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
index 45236fa..f58e9bc 100644
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -23,7 +23,11 @@ movefile ROF_TV_GPU.mex* ../installed/
mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o
movefile FGP_TV_GPU.mex* ../installed/
-delete TV_ROF_GPU_core* TV_FGP_GPU_core* CCPiDefines.h
+!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
+mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o
+movefile FGP_dTV_GPU.mex* ../installed/
+
+delete TV_ROF_GPU_core* TV_FGP_GPU_core* dTV_FGP_GPU_core* CCPiDefines.h
fprintf('%s \n', 'All successfully compiled!');
cd ../../
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
index ba06cc7..aae1cb7 100644
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
@@ -52,7 +52,7 @@ void mexFunction(
dim_array = mxGetDimensions(prhs[0]);
/*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+ if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~
deleted file mode 100644
index 30d61cd..0000000
--- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-
-void mexFunction(
- int nlhs, mxArray *plhs[],
- int nrhs, const mxArray *prhs[])
-
-{
- int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch;
- const int *dim_array;
- float *Input, *Output, lambda, epsil;
-
- number_of_dims = mxGetNumberOfDimensions(prhs[0]);
- dim_array = mxGetDimensions(prhs[0]);
-
- /*Handling Matlab input data*/
- if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch");
-
- Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
- lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
- iter = 300; /* default iterations number */
- epsil = 0.0001; /* default tolerance constant */
- methTV = 0; /* default isotropic TV penalty */
- printswitch = 0; /*default print is switched off - 0 */
-
- if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-
- if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
- if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
- if ((nrhs == 5) || (nrhs == 6)) {
- char *penalty_type;
- penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
- if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
- if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
- mxFree(penalty_type);
- }
- if (nrhs == 6) {
- printswitch = (int) mxGetScalar(prhs[5]);
- if ((printswitch != 0) || (printswitch != 1)) {mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); }
- }
-
- /*Handling Matlab output data*/
- dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-
- if (number_of_dims == 2) {
- dimZ = 1; /*2D case*/
- Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
- }
- if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-
-
- TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ)
-}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c
new file mode 100644
index 0000000..bb868c7
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c
@@ -0,0 +1,113 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "FGP_dTV_core.h"
+
+/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
+ * which employs structural similarity of the level sets of two images/volumes, see [1,2]
+ * The current implementation updates image 1 while image 2 is being fixed.
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
+ * 3. lambdaPar - regularization parameter [REQUIRED]
+ * 4. Number of iterations [OPTIONAL]
+ * 5. eplsilon: tolerance constant [OPTIONAL]
+ * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
+ * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
+ * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
+ * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
+ *
+ * Output:
+ * [1] Filtered/regularized image/volume
+ *
+ * This function is based on the Matlab's codes and papers by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
+ */
+
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
+ const int *dim_array;
+ const int *dim_array2;
+ float *Input, *InputRef, *Output=NULL, lambda, epsil, eta;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+ dim_array2 = mxGetDimensions(prhs[1]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */
+ lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */
+ iter = 300; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ eta = 0.01; /* default smoothing constant */
+ methTV = 0; /* default isotropic TV penalty */
+ nonneg = 0; /* default nonnegativity switch, off - 0 */
+ printswitch = 0; /*default print is switched, off - 0 */
+
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+ if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");}
+ if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");}
+
+
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */
+ if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
+ if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
+ eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */
+ }
+ if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ if ((nrhs == 8) || (nrhs == 9)) {
+ nonneg = (int) mxGetScalar(prhs[7]);
+ if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+ }
+ if (nrhs == 9) {
+ printswitch = (int) mxGetScalar(prhs[8]);
+ if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+ }
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* running the function */
+ dTV_FGP_CPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp
new file mode 100644
index 0000000..5b80616
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp
@@ -0,0 +1,111 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "dTV_FGP_GPU_core.h"
+
+/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case)
+ * which employs structural similarity of the level sets of two images/volumes, see [1,2]
+ * The current implementation updates image 1 while image 2 is being fixed.
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED]
+ * 3. lambdaPar - regularization parameter [REQUIRED]
+ * 4. Number of iterations [OPTIONAL]
+ * 5. eplsilon: tolerance constant [OPTIONAL]
+ * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] *
+ * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL]
+ * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL]
+ * 9. print information: 0 (off) or 1 (on) [OPTIONAL]
+ *
+ * Output:
+ * [1] Filtered/regularized image/volume
+ *
+ * This function is based on the Matlab's codes and papers by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106
+ */
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
+ const int *dim_array;
+ const int *dim_array2;
+ float *Input, *InputRef, *Output=NULL, lambda, epsil, eta;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+ dim_array2 = mxGetDimensions(prhs[1]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+
+ Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */
+ lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */
+ iter = 300; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ eta = 0.01; /* default smoothing constant */
+ methTV = 0; /* default isotropic TV penalty */
+ nonneg = 0; /* default nonnegativity switch, off - 0 */
+ printswitch = 0; /*default print is switched, off - 0 */
+
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+ if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+ if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");}
+ if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");}
+
+
+ if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */
+ if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
+ if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
+ eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */
+ }
+ if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ if ((nrhs == 8) || (nrhs == 9)) {
+ nonneg = (int) mxGetScalar(prhs[7]);
+ if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+ }
+ if (nrhs == 9) {
+ printswitch = (int) mxGetScalar(prhs[8]);
+ if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+ }
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* running the function */
+ dTV_FGP_GPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ);
+} \ No newline at end of file
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
index 039daab..c6723fa 100644
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -2,8 +2,8 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU
-from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU
+from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU dTV_FGP_CPU
+from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU dTV_FGP_GPU
def ROF_TV(inputData, regularisation_parameter, iterations,
time_marching_parameter,device='cpu'):
@@ -42,3 +42,28 @@ def FGP_TV(inputData, regularisation_parameter,iterations,
else:
raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
.format(device))
+def FGP_dTV(inputData, refdata, regularisation_parameter, iterations,
+ tolerance_param, eta_const, methodTV, nonneg, printM, device='cpu'):
+ if device == 'cpu':
+ return dTV_FGP_CPU(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
+ elif device == 'gpu':
+ return dTV_FGP_GPU(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
+ else:
+ raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+ .format(device))
diff --git a/Wrappers/Python/test/run_test.py b/Wrappers/Python/conda-recipe/run_test.py
index 04bbd40..04bbd40 100644
--- a/Wrappers/Python/test/run_test.py
+++ b/Wrappers/Python/conda-recipe/run_test.py
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py
index 929f0af..fd3050c 100644
--- a/Wrappers/Python/demos/demo_cpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -39,9 +39,14 @@ perc = 0.05
u0 = Im + np.random.normal(loc = 0 ,
scale = perc * Im ,
size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+
# map the u0 u0->u0>0
# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
u0 = u0.astype('float32')
+u_ref = u_ref.astype('float32')
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -134,9 +139,64 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_cpu, cmap="gray")
plt.title('{}'.format('CPU results'))
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_____________FGP-dTV (2D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(3)
+plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dtv_cpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+rms = rmse(Im, fgp_dtv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+
# Uncomment to test 3D regularisation performance
#%%
-"""
+
N = 512
slices = 20
@@ -148,10 +208,12 @@ Im = Im/255
perc = 0.05
noisyVol = np.zeros((slices,N,N),dtype='float32')
+noisyRef = np.zeros((slices,N,N),dtype='float32')
idealVol = np.zeros((slices,N,N),dtype='float32')
for i in range (slices):
noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
idealVol[i,:,:] = Im
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -159,7 +221,7 @@ print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure(4)
plt.suptitle('Performance of ROF-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -199,7 +261,7 @@ print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure(5)
plt.suptitle('Performance of FGP-TV regulariser using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -242,5 +304,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the CPU using FGP-TV'))
-"""
-#%% \ No newline at end of file
+
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-dTV (3D)__________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(6)
+plt.suptitle('Performance of FGP-dTV regulariser using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : noisyVol,\
+ 'refdata' : noisyRef,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dTV_cpu3D = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(idealVol, fgp_dTV_cpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV'))
+#%%
diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
index cfe2e7d..aa1f865 100644
--- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -39,10 +39,14 @@ perc = 0.05
u0 = Im + np.random.normal(loc = 0 ,
scale = perc * Im ,
size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
+
# map the u0 u0->u0>0
# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
u0 = u0.astype('float32')
-
+u_ref = u_ref.astype('float32')
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________ROF-TV bench___________________")
@@ -213,3 +217,96 @@ else:
print ("Arrays match")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-dTV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(3)
+plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP dTV CPU####################")
+start_time = timeit.default_timer()
+fgp_dtv_cpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'cpu')
+
+
+rms = rmse(Im, fgp_dtv_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+print ("##############FGP dTV GPU##################")
+start_time = timeit.default_timer()
+fgp_dtv_gpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+rms = rmse(Im, fgp_dtv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_dTV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+ print ("Arrays do not match!")
+else:
+ print ("Arrays match")
diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py
index c496e1c..4759cc3 100644
--- a/Wrappers/Python/demos/demo_gpu_regularisers.py
+++ b/Wrappers/Python/demos/demo_gpu_regularisers.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
import numpy as np
import os
import timeit
-from ccpi.filters.regularisers import ROF_TV, FGP_TV
+from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -39,10 +39,13 @@ perc = 0.05
u0 = Im + np.random.normal(loc = 0 ,
scale = perc * Im ,
size = np.shape(Im))
+u_ref = Im + np.random.normal(loc = 0 ,
+ scale = 0.01 * Im ,
+ size = np.shape(Im))
# map the u0 u0->u0>0
# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
u0 = u0.astype('float32')
-
+u_ref = u_ref.astype('float32')
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________ROF-TV bench___________________")
@@ -134,10 +137,62 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
imgplot = plt.imshow(fgp_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-dTV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(3)
+plt.suptitle('Performance of the FGP-dTV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : u0,\
+ 'refdata' : u_ref,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :2000 ,\
+ 'tolerance_constant':1e-06,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("##############FGP dTV GPU##################")
+start_time = timeit.default_timer()
+fgp_dtv_gpu = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(Im, fgp_dtv_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_dTV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
# Uncomment to test 3D regularisation performance
#%%
-"""
+
N = 512
slices = 20
@@ -149,10 +204,12 @@ Im = Im/255
perc = 0.05
noisyVol = np.zeros((slices,N,N),dtype='float32')
+noisyRef = np.zeros((slices,N,N),dtype='float32')
idealVol = np.zeros((slices,N,N),dtype='float32')
for i in range (slices):
noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im))
+ noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im))
idealVol[i,:,:] = Im
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -160,7 +217,7 @@ print ("_______________ROF-TV (3D)_________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(3)
+fig = plt.figure(4)
plt.suptitle('Performance of ROF-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy 15th slice of a volume')
@@ -200,7 +257,7 @@ print ("_______________FGP-TV (3D)__________________")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
## plot
-fig = plt.figure(4)
+fig = plt.figure(5)
plt.suptitle('Performance of FGP-TV regulariser using the GPU')
a=fig.add_subplot(1,2,1)
a.set_title('Noisy Image')
@@ -242,6 +299,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray")
plt.title('{}'.format('Recovered volume on the GPU using FGP-TV'))
-#%%
-"""
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("_______________FGP-dTV (3D)________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(6)
+plt.suptitle('Performance of FGP-dTV regulariser using the GPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_dTV, \
+ 'input' : noisyVol,\
+ 'refdata' : noisyRef,\
+ 'regularisation_parameter':0.04, \
+ 'number_of_iterations' :300 ,\
+ 'tolerance_constant':0.00001,\
+ 'eta_const':0.2,\
+ 'methodTV': 0 ,\
+ 'nonneg': 0 ,\
+ 'printingOut': 0
+ }
+
+print ("#############FGP TV GPU####################")
+start_time = timeit.default_timer()
+fgp_dTV_gpu3D = FGP_dTV(pars['input'],
+ pars['refdata'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['tolerance_constant'],
+ pars['eta_const'],
+ pars['methodTV'],
+ pars['nonneg'],
+ pars['printingOut'],'gpu')
+
+rms = rmse(idealVol, fgp_dTV_gpu3D)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray")
+plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV'))
+
+#%%
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
index a1c1ab6..c7ebb5c 100644
--- a/Wrappers/Python/setup-regularisers.py.in
+++ b/Wrappers/Python/setup-regularisers.py.in
@@ -36,6 +36,7 @@ extra_include_dirs += [os.path.join(".." , ".." , "Core"),
os.path.join(".." , ".." , "Core", "regularisers_CPU"),
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) ,
os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) ,
+ os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) ,
"."]
if platform.system() == 'Windows':
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 0f08f7f..8f9185a 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -20,6 +20,7 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
+cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
#****************************************************************#
@@ -89,7 +90,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
- #/* Run ROF iterations for 2D data */
+ #/* Run FGP-TV iterations for 2D data */
TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
@@ -115,7 +116,7 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
- #/* Run ROF iterations for 3D data */
+ #/* Run FGP-TV iterations for 3D data */
TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
@@ -124,3 +125,69 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[2], dims[1], dims[0])
return outputData
+#****************************************************************#
+#**************Directional Total-variation FGP ******************#
+#****************************************************************#
+#******** Directional TV Fast-Gradient-Projection (FGP)*********#
+def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM):
+ if inputData.ndim == 2:
+ return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
+ elif inputData.ndim == 3:
+ return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
+
+def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterationsNumb,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run FGP-dTV iterations for 2D data */
+ dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter,
+ iterationsNumb,
+ tolerance_param,
+ methodTV,
+ eta_const,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1)
+
+ return outputData
+
+def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterationsNumb,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run FGP-dTV iterations for 3D data */
+ dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ iterationsNumb,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[2], dims[1], dims[0])
+ return outputData
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index ea746d3..4a14f69 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -20,6 +20,7 @@ cimport numpy as np
cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+cdef extern void dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
# Total-variation Rudin-Osher-Fatemi (ROF)
def TV_ROF_GPU(inputData,
@@ -61,7 +62,36 @@ def TV_FGP_GPU(inputData,
methodTV,
nonneg,
printM)
-
+# Directional Total-variation Fast-Gradient-Projection (FGP)
+def dTV_FGP_GPU(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM):
+ if inputData.ndim == 2:
+ return FGPdTV2D(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
+ elif inputData.ndim == 3:
+ return FGPdTV3D(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
#****************************************************************#
#********************** Total-variation ROF *********************#
#****************************************************************#
@@ -167,4 +197,68 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[2], dims[1], dims[0]);
- return outputData
+ return outputData
+
+#****************************************************************#
+#**************Directional Total-variation FGP ******************#
+#****************************************************************#
+#******** Directional TV Fast-Gradient-Projection (FGP)*********#
+def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterations,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Running CUDA code here
+ dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0],
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1);
+
+ return outputData
+
+def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterations,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0],
+ regularisation_parameter ,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[2], dims[1], dims[0]);
+ return outputData
diff --git a/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc b/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc
deleted file mode 100644
index 2196a53..0000000
--- a/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc
+++ /dev/null
Binary files differ