summaryrefslogtreecommitdiffstats
path: root/demo/Demo2.m
diff options
context:
space:
mode:
Diffstat (limited to 'demo/Demo2.m')
-rw-r--r--demo/Demo2.m156
1 files changed, 0 insertions, 156 deletions
diff --git a/demo/Demo2.m b/demo/Demo2.m
deleted file mode 100644
index 3c1592c..0000000
--- a/demo/Demo2.m
+++ /dev/null
@@ -1,156 +0,0 @@
-% Demonstration of tomographic reconstruction from noisy and corrupted by
-% artifacts undersampled projection data using Students t penalty
-% This is the missing wedge demo, run it after DemoFISTA_StudT
-
-% see ReadMe file for instructions
-% clear all
-% close all
-
-load phantom_bone512.mat % load the phantom
-load my_red_yellowMAP.mat % load the colormap
-% load sino1.mat; % load noisy sinogram
-
-N = 512; % the size of the tomographic image NxN
-theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi)
-theta_rad = theta*(pi/180); % conversion to radians
-P = 2*ceil(N/sqrt(2))+1; % the size of the detector array
-ROI = find(phantom > 0.0);
-
-add_wedges % apply the missing wedge mask
-
-%%
-fprintf('%s\n', 'Direct reconstruction using FBP...');
-FBP_1 = iradon(MW_sino_artifacts', theta, N);
-
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:)));
-
-figure(1);
-% set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[-2 0.8]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 132; %max number of outer iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-params.weights = Dweights; % statistical weighting
-tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
-
-figure(2); clf
-%set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(3); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 200; % max number of outer iterations
-params.lambdaTV = 5.39e-05; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
-
-figure(4); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-figure(5); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 250; % max number of outer iterations
-params.lambdaTV = 0.0019; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector"
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-
-figure(6); clf
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(7); clf
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...');
-clear params
-% define parameters
-params.sino = MW_sino_artifacts;
-params.N = N; % image size
-params.angles = theta_rad; % angles in radians
-params.iterFISTA = 80; % max number of outer iterations
-% params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence)
-params.lambdaTV = 0.0016; % regularization parameter for TV problem
-params.tol = 1.0e-04; % tolerance to terminate TV iterations
-params.iterTV = 20; % the max number of TV iterations
-params.X_ideal = phantom; % ideal phantom
-params.ROI = ROI; % phantom region-of-interest
-params.weights = Dweights; % statistical weighting
-params.fidelity = 'student'; % selecting students t fidelity
-params.show = 0; % visualize reconstruction on each iteration
-params.slice = 1; params.maxvalplot = 0.6;
-tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc;
-
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
-
-figure(8);
-set(gcf, 'Position', get(0,'Screensize'));
-subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar;
-colormap(cmapnew);
-
-figure(9);
-subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar;
-subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar;
-colormap(cmapnew);
-%%
-% print all RMSE's
-fprintf('%s\n', '--------------------------------------------');
-fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:)));
-fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:)));
-% \ No newline at end of file