summaryrefslogtreecommitdiffstats
path: root/demos
diff options
context:
space:
mode:
Diffstat (limited to 'demos')
-rw-r--r--demos/demo_cpu_regularisers.py12
-rw-r--r--demos/demo_gpu_regularisers.py32
2 files changed, 21 insertions, 23 deletions
diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py
index 32b97ce..4866811 100644
--- a/demos/demo_cpu_regularisers.py
+++ b/demos/demo_cpu_regularisers.py
@@ -32,7 +32,7 @@ def printParametersToString(pars):
###############################################################################
#filename = os.path.join( "data" ,"lena_gray_512.tif")
-filename = "/home/algol/Documents/DEV/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"
+filename = "/home/kjy41806/Documents/SOFT/CCPi-Regularisation-Toolkit/test/lena_gray_512.tif"
# read image
Im = plt.imread(filename)
@@ -86,13 +86,13 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm': ROF_TV, \
'input' : u0,\
'regularisation_parameter':0.02,\
- 'number_of_iterations': 5000,\
- 'time_marching_parameter': 0.000385,\
+ 'number_of_iterations': 1000,\
+ 'time_marching_parameter': 0.001,\
'tolerance_constant':1e-06}
print ("#############ROF TV CPU####################")
start_time = timeit.default_timer()
-(rof_cpu,info_vec) = ROF_TV(pars['input'],
+(rof_cpu,info_vec_cpu) = ROF_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['time_marching_parameter'],
@@ -130,14 +130,14 @@ imgplot = plt.imshow(u0,cmap="gray")
pars = {'algorithm' : FGP_TV, \
'input' : u0,\
'regularisation_parameter':0.02, \
- 'number_of_iterations' :800 ,\
+ 'number_of_iterations' :200 ,\
'tolerance_constant':1e-06,\
'methodTV': 0 ,\
'nonneg': 0}
print ("#############FGP TV CPU####################")
start_time = timeit.default_timer()
-fgp_cpu,info_vec = FGP_TV(pars['input'],
+fgp_cpu,info_vec_cpu = FGP_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
diff --git a/demos/demo_gpu_regularisers.py b/demos/demo_gpu_regularisers.py
index 89bb948..212ad5a 100644
--- a/demos/demo_gpu_regularisers.py
+++ b/demos/demo_gpu_regularisers.py
@@ -83,16 +83,18 @@ imgplot = plt.imshow(u0,cmap="gray")
# set parameters
pars = {'algorithm': ROF_TV, \
'input' : u0,\
- 'regularisation_parameter':0.04,\
- 'number_of_iterations': 1200,\
- 'time_marching_parameter': 0.0025
- }
+ 'regularisation_parameter':0.02,\
+ 'number_of_iterations': 5000,\
+ 'time_marching_parameter': 0.001,\
+ 'tolerance_constant':1e-06}
+
print ("##############ROF TV GPU##################")
start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'],
- pars['regularisation_parameter'],
- pars['number_of_iterations'],
- pars['time_marching_parameter'],'gpu')
+(rof_gpu, info_vec_gpu) = ROF_TV(pars['input'],
+ pars['regularisation_parameter'],
+ pars['number_of_iterations'],
+ pars['time_marching_parameter'],
+ pars['tolerance_constant'], 'gpu')
Qtools = QualityTools(Im, rof_gpu)
pars['rmse'] = Qtools.rmse()
@@ -125,23 +127,20 @@ imgplot = plt.imshow(u0,cmap="gray")
# set parameters
pars = {'algorithm' : FGP_TV, \
'input' : u0,\
- 'regularisation_parameter':0.04, \
- 'number_of_iterations' :1200 ,\
+ 'regularisation_parameter':0.02, \
+ 'number_of_iterations' :300 ,\
'tolerance_constant':1e-06,\
'methodTV': 0 ,\
- 'nonneg': 0 ,\
- 'printingOut': 0
- }
+ 'nonneg': 0}
print ("##############FGP TV GPU##################")
start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'],
+(fgp_gpu, info_vec_gpu) = FGP_TV(pars['input'],
pars['regularisation_parameter'],
pars['number_of_iterations'],
pars['tolerance_constant'],
pars['methodTV'],
- pars['nonneg'],
- pars['printingOut'],'gpu')
+ pars['nonneg'],'gpu')
Qtools = QualityTools(Im, fgp_gpu)
pars['rmse'] = Qtools.rmse()
pars['algorithm'] = FGP_TV
@@ -157,7 +156,6 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(fgp_gpu, cmap="gray")
plt.title('{}'.format('GPU results'))
-
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("____________SB-TV regulariser______________")