diff options
Diffstat (limited to 'demos')
-rw-r--r-- | demos/SoftwareX_supp/Demo_VolumeDenoise.py | 121 |
1 files changed, 121 insertions, 0 deletions
diff --git a/demos/SoftwareX_supp/Demo_VolumeDenoise.py b/demos/SoftwareX_supp/Demo_VolumeDenoise.py new file mode 100644 index 0000000..2387e94 --- /dev/null +++ b/demos/SoftwareX_supp/Demo_VolumeDenoise.py @@ -0,0 +1,121 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Generates phantom using TomoPhantom software +* Denoise using closely to optimal parameters +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. TomoPhantom software for phantom and data generation + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +Apache 2.0. +""" +import timeit +import matplotlib.pyplot as plt +# import matplotlib.gridspec as gridspec +import numpy as np +import os +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.artifacts import ArtifactsClass +from ccpi.supp.qualitymetrics import QualityTools +from scipy.signal import gaussian +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, LLT_ROF, NDF, Diff4th +#%% +print ("Building 3D phantom using TomoPhantom software") +tic=timeit.default_timer() +model = 9 # select a model number from the library +N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) +toc=timeit.default_timer() +Run_time = toc - tic +print("Phantom has been built in {} seconds".format(Run_time)) + +# adding normally distributed noise +artifacts_add = ArtifactsClass(phantom_tm) +phantom_noise = artifacts_add.noise(sigma=0.1,noisetype='Gaussian') + +sliceSel = int(0.5*N_size) +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom_noise[sliceSel,:,:],vmin=0, vmax=1.4) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom_noise[:,sliceSel,:],vmin=0, vmax=1.4) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom_noise[:,:,sliceSel],vmin=0, vmax=1.4) +plt.title('3D Phantom, sagittal view') +plt.show() +#%% +print ("____________________Applying regularisers_______________________") + +print ("#############ROF TV CPU####################") +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : phantom_noise,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 100,\ + 'time_marching_parameter': 0.0025 + } + +tic=timeit.default_timer() +rof_cpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +toc=timeit.default_timer() + +Run_time_rof = toc - tic +Qtools = QualityTools(phantom_tm, rof_cpu3D) +RMSE_rof = Qtools.rmse() + +# SSIM measure +Qtools = QualityTools(phantom_tm[128,:,:]*255, rof_cpu3D[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_rof = Qtools.ssim(win2d) + +print("ROF-TV (cpu) ____ RMSE: {}, MMSIM: {}, run time: {} sec".format(RMSE_rof,ssim_rof[0],Run_time_rof)) +#%% +print ("#############ROF TV GPU####################") +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : phantom_noise,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 600,\ + 'time_marching_parameter': 0.0025 + } + +tic=timeit.default_timer() +rof_gpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') +toc=timeit.default_timer() + +Run_time_rof = toc - tic +Qtools = QualityTools(phantom_tm, rof_gpu3D) +RMSE_rof = Qtools.rmse() + +# SSIM measure +Qtools = QualityTools(phantom_tm[128,:,:]*255, rof_gpu3D[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_rof = Qtools.ssim(win2d) + +print("ROF-TV (gpu) ____ RMSE: {}, MMSIM: {}, run time: {} sec".format(RMSE_rof,ssim_rof[0],Run_time_rof)) + +#%% + |