diff options
Diffstat (limited to 'main_func')
-rw-r--r-- | main_func/FISTA_REC.m | 40 | ||||
-rw-r--r-- | main_func/compile_mex.m | 11 | ||||
-rw-r--r-- | main_func/regularizers_CPU/FGP_TV_core.c | 26 | ||||
-rw-r--r-- | main_func/regularizers_CPU/FGP_TV_core.h | 27 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model.c | 26 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model_core.c | 25 | ||||
-rw-r--r-- | main_func/regularizers_CPU/LLT_model_core.h | 25 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul.c | 43 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul_core.c | 57 | ||||
-rw-r--r-- | main_func/regularizers_CPU/PatchBased_Regul_core.h | 33 | ||||
-rw-r--r-- | main_func/regularizers_CPU/SplitBregman_TV_core.c | 1 | ||||
-rw-r--r-- | main_func/regularizers_CPU/SplitBregman_TV_core.h | 24 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD.c | 68 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD_core.c | 1 | ||||
-rw-r--r-- | main_func/regularizers_CPU/TGV_PD_core.h | 29 |
15 files changed, 180 insertions, 256 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m index 2823691..1e93719 100644 --- a/main_func/FISTA_REC.m +++ b/main_func/FISTA_REC.m @@ -99,7 +99,7 @@ else clear proj_geomT vol_geomT else % divergen beam geometry - fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...'); + fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry... will take some time!'); niter = 8; % number of iteration for PM x1 = rand(N,N,SlicesZ); sqweight = sqrt(weights); @@ -216,6 +216,39 @@ if (isfield(params,'initialize')) else X = zeros(N,N,SlicesZ, 'single'); % storage for the solution end +if (isfield(params,'OS')) + % Ordered Subsets reorganisation of data and angles + OS = 1; + subsets = 8; + angles = proj_geom.ProjectionAngles; + binEdges = linspace(min(angles),max(angles),subsets+1); + + % assign values to bins + [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]); + + % rearrange angles into subsets + AnglesReorg = zeros(length(angles),1); + SinoReorg = zeros(Detectors, anglesNumb, SlicesZ, 'single'); + + counterM = 0; + for ii = 1:max(binsDiscr(:)) + counter = 0; + for jj = 1:subsets + curr_index = ii+jj-1 + counter; + if (binsDiscr(jj) >= ii) + counterM = counterM + 1; + AnglesReorg(counterM) = angles(curr_index); + SinoReorg(:,counterM,:) = squeeze(sino(:,curr_index,:)); + end + counter = (counter + binsDiscr(jj)) - 1; + end + end + sino = SinoReorg; + clear SinoReorg; +else + OS = 0; % normal FISTA +end + %----------------Reconstruction part------------------------ Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given) @@ -241,7 +274,7 @@ for i = 1:iterFISTA % ring removal part (Group-Huber fidelity) for kkk = 1:anglesNumb residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); - end + end vec = sum(residual,2); if (SlicesZ > 1) vec = squeeze(vec(:,1,:)); @@ -249,7 +282,7 @@ for i = 1:iterFISTA r = r_x - (1./L_const).*vec; else % no ring removal - residual = weights.*(sino_updt - sino); + residual = weights.*(sino_updt - sino); end objective(i) = (0.5*norm(residual(:))^2)/(Detectors*anglesNumb*SlicesZ); % for the objective function output @@ -305,5 +338,6 @@ end output.Resid_error = Resid_error; output.objective = objective; output.L_const = L_const; +output.sino = sino; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end diff --git a/main_func/compile_mex.m b/main_func/compile_mex.m index 7bfa8eb..66c05da 100644 --- a/main_func/compile_mex.m +++ b/main_func/compile_mex.m @@ -1,10 +1,11 @@ -% compile mex's once +% compile mex's in Matlab once cd regularizers_CPU/ -mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex LLT_model.c LLT_model_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex FGP_TV.c FGP_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex SplitBregman_TV.c SplitBregman_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex PatchBased_Regul.c PatchBased_Regul_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" cd ../../ cd demos diff --git a/main_func/regularizers_CPU/FGP_TV_core.c b/main_func/regularizers_CPU/FGP_TV_core.c index c383a71..a55991c 100644 --- a/main_func/regularizers_CPU/FGP_TV_core.c +++ b/main_func/regularizers_CPU/FGP_TV_core.c @@ -19,6 +19,32 @@ limitations under the License. #include "FGP_TV_core.h" +/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon: tolerance constant [OPTIONAL parameter] + * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] + * + * Output: + * [1] Filtered/regularized image + * [2] last function value + * + * Example of image denoising: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .05*randn(size(Im)); % adding noise + * u = FGP_TV(single(u0), 0.05, 100, 1e-04); + * + * This function is based on the Matlab's code and paper by + * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" + * + * D. Kazantsev, 2016-17 + * + */ + /* 2D-case related Functions */ /*****************************************************************/ float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) diff --git a/main_func/regularizers_CPU/FGP_TV_core.h b/main_func/regularizers_CPU/FGP_TV_core.h index 8d6af3e..e5328fb 100644 --- a/main_func/regularizers_CPU/FGP_TV_core.h +++ b/main_func/regularizers_CPU/FGP_TV_core.h @@ -24,33 +24,6 @@ limitations under the License. #include <stdio.h> #include "omp.h" -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) -* -* Input Parameters: -* 1. Noisy image/volume [REQUIRED] -* 2. lambda - regularization parameter [REQUIRED] -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon: tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* -* Output: -* [1] Filtered/regularized image -* [2] last function value -* -* Example of image denoising: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .05*randn(size(Im)); % adding noise -* u = FGP_TV(single(u0), 0.05, 100, 1e-04); -* -* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* This function is based on the Matlab's code and paper by -* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" -* -* D. Kazantsev, 2016-17 -* -*/ - float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); diff --git a/main_func/regularizers_CPU/LLT_model.c b/main_func/regularizers_CPU/LLT_model.c index 6b50d33..47146a5 100644 --- a/main_func/regularizers_CPU/LLT_model.c +++ b/main_func/regularizers_CPU/LLT_model.c @@ -20,6 +20,32 @@ limitations under the License. #include "mex.h" #include "LLT_model_core.h" +/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty +* +* Input Parameters: +* 1. U0 - origanal noise image/volume +* 2. lambda - regularization parameter +* 3. tau - time-step for explicit scheme +* 4. iter - iterations number +* 5. epsil - tolerance constant (to terminate earlier) +* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* [Den] = LLT_model(single(u0), 10, 0.1, 1); +* +* +* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE +* +* 28.11.16/Harwell +*/ + void mexFunction( int nlhs, mxArray *plhs[], diff --git a/main_func/regularizers_CPU/LLT_model_core.c b/main_func/regularizers_CPU/LLT_model_core.c index 3098269..7a1cdbe 100644 --- a/main_func/regularizers_CPU/LLT_model_core.c +++ b/main_func/regularizers_CPU/LLT_model_core.c @@ -19,6 +19,31 @@ limitations under the License. #include "LLT_model_core.h" +/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty +* +* Input Parameters: +* 1. U0 - origanal noise image/volume +* 2. lambda - regularization parameter +* 3. tau - time-step for explicit scheme +* 4. iter - iterations number +* 5. epsil - tolerance constant (to terminate earlier) +* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* [Den] = LLT_model(single(u0), 10, 0.1, 1); +* +* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE +* +* 28.11.16/Harwell +*/ + + float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ) { int i, j, i_p, i_m, j_m, j_p; diff --git a/main_func/regularizers_CPU/LLT_model_core.h b/main_func/regularizers_CPU/LLT_model_core.h index ef8803d..10f52fe 100644 --- a/main_func/regularizers_CPU/LLT_model_core.h +++ b/main_func/regularizers_CPU/LLT_model_core.h @@ -26,31 +26,6 @@ limitations under the License. #define EPS 0.01 -/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty -* -* Input Parameters: -* 1. U0 - origanal noise image/volume -* 2. lambda - regularization parameter -* 3. tau - time-step for explicit scheme -* 4. iter - iterations number -* 5. epsil - tolerance constant (to terminate earlier) -* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .03*randn(size(Im)); % adding noise -* [Den] = LLT_model(single(u0), 10, 0.1, 1); -* -* -* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE -* -* 28.11.16/Harwell -*/ /* 2D functions */ float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ); float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau); diff --git a/main_func/regularizers_CPU/PatchBased_Regul.c b/main_func/regularizers_CPU/PatchBased_Regul.c index 24ee210..59eb3b3 100644 --- a/main_func/regularizers_CPU/PatchBased_Regul.c +++ b/main_func/regularizers_CPU/PatchBased_Regul.c @@ -27,27 +27,23 @@ limitations under the License. * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
*
- * Input Parameters (mandatory):
- * 1. Image (2D or 3D)
- * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
- * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
- * 4. h - parameter for the PB penalty function
- * 5. lambda - regularization parameter
+ * Input Parameters:
+ * 1. Image (2D or 3D) [required]
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
+ * 4. h - parameter for the PB penalty function [optional]
+ * 5. lambda - regularization parameter [optional]
* Output:
* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
*
- * Quick 2D denoising example in Matlab:
+ * 2D denoising example in Matlab:
Im = double(imread('lena_gray_256.tif'))/255; % loading image
u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
- ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
- *
- * Please see more tests in a file:
- TestTemporalSmoothing.m
-
+ ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
*
* Matlab + C/mex compilers needed
- * to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+ * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
*
* D. Kazantsev *
* 02/07/2014
@@ -70,17 +66,23 @@ void mexFunction( M = dims[1];
Z = dims[2];
- if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
+ if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
/*Handling inputs*/
- A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
- SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
- SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
- h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
- lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
+ A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
+ SearchW_real = 3; /*default value*/
+ SimilW = 1; /*default value*/
+ h = 0.1;
+ lambda = 0.1;
+
+ if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
+ if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
+
if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
@@ -89,7 +91,6 @@ void mexFunction( /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
/* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
-
padXY = SearchW + 2*SimilW; /* padding sizes */
newsizeX = N + 2*(padXY); /* the X size of the padded array */
@@ -135,4 +136,4 @@ void mexFunction( switchpad_crop = 1; /*cropping*/
pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
} /*end else ndims*/
-}
\ No newline at end of file +}
diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.c b/main_func/regularizers_CPU/PatchBased_Regul_core.c index 6f0a48d..acfb464 100644 --- a/main_func/regularizers_CPU/PatchBased_Regul_core.c +++ b/main_func/regularizers_CPU/PatchBased_Regul_core.c @@ -19,40 +19,33 @@ limitations under the License. #include "PatchBased_Regul_core.h" -/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). -* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function -* -* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" -* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" -* -* Input Parameters (mandatory): -* 1. Image (2D or 3D) -* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) -* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) -* 4. h - parameter for the PB penalty function -* 5. lambda - regularization parameter +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). + * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function + * + * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" + * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" + * + * Input Parameters: + * 1. Image (2D or 3D) [required] + * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional] + * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional] + * 4. h - parameter for the PB penalty function [optional] + * 5. lambda - regularization parameter [optional] -* Output: -* 1. regularized (denoised) Image (N x N)/volume (N x N x N) -* -* Quick 2D denoising example in Matlab: -Im = double(imread('lena_gray_256.tif'))/255; % loading image -u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -* -* Please see more tests in a file: -TestTemporalSmoothing.m - -* -* Matlab + C/mex compilers needed -* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" -* -* D. Kazantsev * -* 02/07/2014 -* Harwell, UK -*/ + * Output: + * 1. regularized (denoised) Image (N x N)/volume (N x N x N) + * + * 2D denoising example in Matlab: + Im = double(imread('lena_gray_256.tif'))/255; % loading image + u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise + ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); + + * D. Kazantsev * + * 02/07/2014 + * Harwell, UK + */ -/*2D version*/ +/*2D version function */ float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda) { int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full; diff --git a/main_func/regularizers_CPU/PatchBased_Regul_core.h b/main_func/regularizers_CPU/PatchBased_Regul_core.h index b83cf10..5aa6415 100644 --- a/main_func/regularizers_CPU/PatchBased_Regul_core.h +++ b/main_func/regularizers_CPU/PatchBased_Regul_core.h @@ -26,39 +26,6 @@ limitations under the License. #include <stdio.h> #include "omp.h" -/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). -* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function -* -* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" -* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" -* -* Input Parameters (mandatory): -* 1. Image (2D or 3D) -* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) -* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) -* 4. h - parameter for the PB penalty function -* 5. lambda - regularization parameter - -* Output: -* 1. regularized (denoised) Image (N x N)/volume (N x N x N) -* -* Quick 2D denoising example in Matlab: -Im = double(imread('lena_gray_256.tif'))/255; % loading image -u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise -ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -* -* Please see more tests in a file: -TestTemporalSmoothing.m - -* -* Matlab + C/mex compilers needed -* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" -* -* D. Kazantsev * -* 02/07/2014 -* Harwell, UK -*/ - float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda); float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda); diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.c b/main_func/regularizers_CPU/SplitBregman_TV_core.c index 26ad5b1..283dd43 100644 --- a/main_func/regularizers_CPU/SplitBregman_TV_core.c +++ b/main_func/regularizers_CPU/SplitBregman_TV_core.c @@ -37,7 +37,6 @@ limitations under the License. * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; * u = SplitBregman_TV(single(u0), 10, 30, 1e-04); * -* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" * References: * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. * D. Kazantsev, 2016* diff --git a/main_func/regularizers_CPU/SplitBregman_TV_core.h b/main_func/regularizers_CPU/SplitBregman_TV_core.h index ed9112c..a7aaabb 100644 --- a/main_func/regularizers_CPU/SplitBregman_TV_core.h +++ b/main_func/regularizers_CPU/SplitBregman_TV_core.h @@ -23,30 +23,6 @@ limitations under the License. #include <stdio.h> #include "omp.h" -/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) -* -* Input Parameters: -* 1. Noisy image/volume -* 2. lambda - regularization parameter -* 3. Number of iterations [OPTIONAL parameter] -* 4. eplsilon - tolerance constant [OPTIONAL parameter] -* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -* -* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: -* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. -* D. Kazantsev, 2016* -*/ - float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu); float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); diff --git a/main_func/regularizers_CPU/TGV_PD.c b/main_func/regularizers_CPU/TGV_PD.c index 8bce18a..d4bb787 100644 --- a/main_func/regularizers_CPU/TGV_PD.c +++ b/main_func/regularizers_CPU/TGV_PD.c @@ -39,7 +39,7 @@ limitations under the License. * u0 = Im + .03*randn(size(Im)); % adding noise * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; * - * to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" * References: * K. Bredies "Total Generalized Variation" * @@ -53,7 +53,7 @@ void mexFunction( { int number_of_dims, iter, dimX, dimY, dimZ, ll; const int *dim_array; - float *A, *U, *U_old, *P1, *P2, *P3, *Q1, *Q2, *Q3, *Q4, *Q5, *Q6, *Q7, *Q8, *Q9, *V1, *V1_old, *V2, *V2_old, *V3, *V3_old, lambda, L2, tau, sigma, alpha1, alpha0; + float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); @@ -88,40 +88,10 @@ void mexFunction( V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); } - else if (number_of_dims == 3) { - mexErrMsgTxt("The input data should be 2D"); - /*3D case*/ -// dimZ = dim_array[2]; -// U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// -// P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// -// Q1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q4 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q5 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q6 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q7 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q8 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// Q9 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// -// U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// -// V1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// V1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// V2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// V2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// V3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); -// V3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - } - else {mexErrMsgTxt("The input data should be 2D");} - - - /*printf("%i \n", i);*/ + V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + + /*printf("%i \n", i);*/ L2 = 12.0; /*Lipshitz constant*/ tau = 1.0/pow(L2,0.5); sigma = 1.0/pow(L2,0.5); @@ -129,7 +99,6 @@ void mexFunction( /*Copy A to U*/ copyIm(A, U, dimX, dimY, dimZ); - if (number_of_dims == 2) { /* Here primal-dual iterations begin for 2D */ for(ll = 0; ll < iter; ll++) { @@ -164,23 +133,12 @@ void mexFunction( /*get new V*/ newU(V1, V1_old, dimX, dimY, dimZ); newU(V2, V2_old, dimX, dimY, dimZ); - } /*end of iterations*/ + } /*end of iterations*/ } - -// /*3D version*/ -// if (number_of_dims == 3) { -// /* Here primal-dual iterations begin for 3D */ -// for(ll = 0; ll < iter; ll++) { -// -// /* Calculate Dual Variable P */ -// DualP_3D(U, V1, V2, V3, P1, P2, P3, dimX, dimY, dimZ, sigma); -// -// /*Projection onto convex set for P*/ -// ProjP_3D(P1, P2, P3, dimX, dimY, dimZ, alpha1); -// -// /* Calculate Dual Variable Q */ -// DualQ_3D(V1, V2, V2, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, dimX, dimY, dimZ, sigma); -// -// } /*end of iterations*/ -// } + else if (number_of_dims == 3) { + mexErrMsgTxt("The input data should be a 2D array"); + /*3D case*/ + } + else {mexErrMsgTxt("The input data should be a 2D array");} + } diff --git a/main_func/regularizers_CPU/TGV_PD_core.c b/main_func/regularizers_CPU/TGV_PD_core.c index 4c0427c..1164b73 100644 --- a/main_func/regularizers_CPU/TGV_PD_core.c +++ b/main_func/regularizers_CPU/TGV_PD_core.c @@ -38,7 +38,6 @@ limitations under the License. * u0 = Im + .03*randn(size(Im)); % adding noise * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; * - * to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" * References: * K. Bredies "Total Generalized Variation" * diff --git a/main_func/regularizers_CPU/TGV_PD_core.h b/main_func/regularizers_CPU/TGV_PD_core.h index e25ae68..04ba95c 100644 --- a/main_func/regularizers_CPU/TGV_PD_core.h +++ b/main_func/regularizers_CPU/TGV_PD_core.h @@ -24,32 +24,6 @@ limitations under the License. #include <stdio.h> #include "omp.h" -/* C-OMP implementation of Primal-Dual denoising method for -* Total Generilized Variation (TGV)-L2 model (2D case only) -* -* Input Parameters: -* 1. Noisy image/volume (2D) -* 2. lambda - regularization parameter -* 3. parameter to control first-order term (alpha1) -* 4. parameter to control the second-order term (alpha0) -* 5. Number of CP iterations -* -* Output: -* Filtered/regularized image -* -* Example: -* figure; -* Im = double(imread('lena_gray_256.tif'))/255; % loading image -* u0 = Im + .03*randn(size(Im)); % adding noise -* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; -* -* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" -* References: -* K. Bredies "Total Generalized Variation" -* -* 28.11.16/Harwell -*/ - /* 2D functions */ float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma); float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1); @@ -57,8 +31,5 @@ float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0); float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau); float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau); -/*3D functions*/ -float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma); - float newU(float *U, float *U_old, int dimX, int dimY, int dimZ); float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); |