diff options
Diffstat (limited to 'src/Python')
| -rw-r--r-- | src/Python/ccpi/filters/regularisers.py | 7 | ||||
| -rw-r--r-- | src/Python/setup-regularisers.py.in | 2 | ||||
| -rw-r--r-- | src/Python/src/cpu_regularisers.pyx | 38 | 
3 files changed, 24 insertions, 23 deletions
diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py index 588ea32..fb2c999 100644 --- a/src/Python/ccpi/filters/regularisers.py +++ b/src/Python/ccpi/filters/regularisers.py @@ -29,15 +29,14 @@ def ROF_TV(inputData, regularisation_parameter, iterations,                           .format(device))  def FGP_TV(inputData, regularisation_parameter,iterations, -                     tolerance_param, methodTV, nonneg, printM, device='cpu'): +                     tolerance_param, methodTV, nonneg, device='cpu'):      if device == 'cpu':          return TV_FGP_CPU(inputData,                       regularisation_parameter,                       iterations,                        tolerance_param,                       methodTV, -                     nonneg, -                     printM) +                     nonneg)      elif device == 'gpu' and gpu_enabled:          return TV_FGP_GPU(inputData,                       regularisation_parameter, @@ -45,7 +44,7 @@ def FGP_TV(inputData, regularisation_parameter,iterations,                       tolerance_param,                       methodTV,                       nonneg, -                     printM) +                     1)      else:          if not gpu_enabled and device == 'gpu':              raise ValueError ('GPU is not available') diff --git a/src/Python/setup-regularisers.py.in b/src/Python/setup-regularisers.py.in index 82d9f9f..39b820a 100644 --- a/src/Python/setup-regularisers.py.in +++ b/src/Python/setup-regularisers.py.in @@ -44,7 +44,7 @@ extra_include_dirs += [os.path.join(".." , "Core"),                         os.path.join(".." , "Core",  "regularisers_GPU" , "LLTROF" ) ,                         os.path.join(".." , "Core",  "regularisers_GPU" , "NDF" ) ,                         os.path.join(".." , "Core",  "regularisers_GPU" , "dTV_FGP" ) , -                       os.path.join(".." , "Core",  "regularisers_GPU" , "DIFF4th" ) , +                       os.path.join(".." , "Core",  "regularisers_GPU" , "Diff4th" ) ,                         os.path.join(".." , "Core",  "regularisers_GPU" , "PatchSelect" ) ,  						   "."] diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx index 11a0617..b7d029d 100644 --- a/src/Python/src/cpu_regularisers.pyx +++ b/src/Python/src/cpu_regularisers.pyx @@ -19,7 +19,7 @@ import numpy as np  cimport numpy as np  cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); -cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); +cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int dimX, int dimY, int dimZ);  cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ);  cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);  cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); @@ -45,7 +45,7 @@ def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_ste  def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,                        float regularisation_parameter, -                     int iterationsNumb,                      +                     int iterationsNumb,                       float marching_step_parameter):      cdef long dims[2]      dims[0] = inputData.shape[0] @@ -80,45 +80,46 @@ def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,  #********************** Total-variation FGP *********************#  #****************************************************************#  #******** Total-variation Fast-Gradient-Projection (FGP)*********# -def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM): +def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg):      if inputData.ndim == 2: -        return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM) +        return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg)      elif inputData.ndim == 3: -        return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM) +        return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg)  def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,                        float regularisation_parameter,                       int iterationsNumb,                        float tolerance_param,                       int methodTV, -                     int nonneg, -                     int printM): -                          +                     int nonneg): +      cdef long dims[2]      dims[0] = inputData.shape[0]      dims[1] = inputData.shape[1]      cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \              np.zeros([dims[0],dims[1]], dtype='float32') -                    +         +    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] infovec = \ +            np.ones([dims[0],dims[1]], dtype='float32') +          #/* Run FGP-TV iterations for 2D data */ -    TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,  +    TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0,0], regularisation_parameter,                          iterationsNumb,                          tolerance_param,                         methodTV,                         nonneg, -                       printM,                         dims[1],dims[0],1) -    return outputData         +    return (outputData,infovec)  def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,                        float regularisation_parameter,                       int iterationsNumb,                        float tolerance_param,                       int methodTV, -                     int nonneg, -                     int printM): +                     int nonneg): +          cdef long dims[3]      dims[0] = inputData.shape[0]      dims[1] = inputData.shape[1] @@ -126,16 +127,17 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,      cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \              np.zeros([dims[0], dims[1], dims[2]], dtype='float32') -            +    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ +            np.zeros([2], dtype='float32') +      #/* Run FGP-TV iterations for 3D data */ -    TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, +    TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameter,                         iterationsNumb,                          tolerance_param,                         methodTV,                         nonneg, -                       printM,                         dims[2], dims[1], dims[0]) -    return outputData  +    return (outputData,infovec)  #***************************************************************#  #********************** Total-variation SB *********************#  | 
