From b9fafd363d1d181a4a8b42ea4038924097207913 Mon Sep 17 00:00:00 2001
From: Daniil Kazantsev <dkazanc@hotmail.com>
Date: Mon, 9 Apr 2018 13:41:06 +0100
Subject: major renaming and new  3D demos for Matlab

---
 Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m       |  44 ++
 Wrappers/Matlab/demos/demoMatlab_denoise.m         |   8 +-
 Wrappers/Matlab/mex_compile/compileCPU_mex.m       |   8 +-
 Wrappers/Matlab/mex_compile/compileGPU_mex.m       |   8 +-
 .../Matlab/mex_compile/regularisers_CPU/FGP_TV.c   |  96 ++++
 .../Matlab/mex_compile/regularisers_CPU/FGP_TV.c~  |  91 ++++
 .../Matlab/mex_compile/regularisers_CPU/ROF_TV.c   |  73 +++
 .../mex_compile/regularisers_GPU/FGP_TV_GPU.cpp    |  95 ++++
 .../mex_compile/regularisers_GPU/ROF_TV_GPU.cpp    |  73 +++
 .../Matlab/mex_compile/regularizers_CPU/FGP_TV.c   |  96 ----
 .../Matlab/mex_compile/regularizers_CPU/ROF_TV.c   |  73 ---
 .../mex_compile/regularizers_GPU/FGP_TV_GPU.cpp    |  95 ----
 .../mex_compile/regularizers_GPU/ROF_TV_GPU.cpp    |  73 ---
 Wrappers/Python/CMakeLists.txt                     |  20 +-
 Wrappers/Python/ccpi/filters/regularisers.py       |  44 ++
 Wrappers/Python/ccpi/filters/regularizers.py       |  44 --
 Wrappers/Python/conda-recipe/bld.bat               |   4 +-
 Wrappers/Python/conda-recipe/build.sh              |   4 +-
 Wrappers/Python/conda-recipe/meta.yaml             |   6 +-
 Wrappers/Python/demo/test_cpu_regularisers.py      | 323 ++++++++++++++
 Wrappers/Python/demo/test_cpu_regularizers.py      | 488 ---------------------
 Wrappers/Python/fista-recipe/bld.bat               |  13 -
 Wrappers/Python/fista-recipe/build.sh              |  10 -
 Wrappers/Python/fista-recipe/meta.yaml             |  29 --
 Wrappers/Python/setup-fista.py                     |  27 --
 Wrappers/Python/setup-regularisers.py.in           |  65 +++
 Wrappers/Python/setup-regularizers.py.in           |  65 ---
 Wrappers/Python/src/cpu_regularisers.pyx           | 126 ++++++
 Wrappers/Python/src/cpu_regularizers.pyx           | 126 ------
 Wrappers/Python/src/gpu_regularisers.pyx           | 170 +++++++
 Wrappers/Python/src/gpu_regularizers.pyx           | 170 -------
 Wrappers/Python/test/test_cpu_regularisers.py      | 442 +++++++++++++++++++
 Wrappers/Python/test/test_cpu_regularizers.py      | 442 -------------------
 .../Python/test/test_cpu_vs_gpu_regularisers.py    | 219 +++++++++
 .../Python/test/test_cpu_vs_gpu_regularizers.py    | 219 ---------
 Wrappers/Python/test/test_gpu_regularisers.py      | 143 ++++++
 Wrappers/Python/test/test_gpu_regularizers.py      | 239 ----------
 Wrappers/Python/test/test_regularisers_3d.py       | 425 ++++++++++++++++++
 Wrappers/Python/test/test_regularizers.py          | 395 -----------------
 Wrappers/Python/test/test_regularizers_3d.py       | 425 ------------------
 40 files changed, 2458 insertions(+), 3058 deletions(-)
 create mode 100644 Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
 create mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
 create mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~
 create mode 100644 Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
 create mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp
 create mode 100644 Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp
 delete mode 100644 Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
 delete mode 100644 Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
 delete mode 100644 Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp
 delete mode 100644 Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp
 create mode 100644 Wrappers/Python/ccpi/filters/regularisers.py
 delete mode 100644 Wrappers/Python/ccpi/filters/regularizers.py
 create mode 100644 Wrappers/Python/demo/test_cpu_regularisers.py
 delete mode 100644 Wrappers/Python/demo/test_cpu_regularizers.py
 delete mode 100644 Wrappers/Python/fista-recipe/bld.bat
 delete mode 100644 Wrappers/Python/fista-recipe/build.sh
 delete mode 100644 Wrappers/Python/fista-recipe/meta.yaml
 delete mode 100644 Wrappers/Python/setup-fista.py
 create mode 100644 Wrappers/Python/setup-regularisers.py.in
 delete mode 100644 Wrappers/Python/setup-regularizers.py.in
 create mode 100644 Wrappers/Python/src/cpu_regularisers.pyx
 delete mode 100644 Wrappers/Python/src/cpu_regularizers.pyx
 create mode 100644 Wrappers/Python/src/gpu_regularisers.pyx
 delete mode 100644 Wrappers/Python/src/gpu_regularizers.pyx
 create mode 100644 Wrappers/Python/test/test_cpu_regularisers.py
 delete mode 100644 Wrappers/Python/test/test_cpu_regularizers.py
 create mode 100644 Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py
 delete mode 100644 Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py
 create mode 100644 Wrappers/Python/test/test_gpu_regularisers.py
 delete mode 100644 Wrappers/Python/test/test_gpu_regularizers.py
 create mode 100644 Wrappers/Python/test/test_regularisers_3d.py
 delete mode 100644 Wrappers/Python/test/test_regularizers.py
 delete mode 100644 Wrappers/Python/test/test_regularizers_3d.py

(limited to 'Wrappers')

diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
new file mode 100644
index 0000000..f5c3ad1
--- /dev/null
+++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
@@ -0,0 +1,44 @@
+% Volume (3D) denoising demo using CCPi-RGL
+
+addpath('../mex_compile/installed');
+addpath('../../../data/');
+
+N = 256; 
+slices = 30;
+vol3D = zeros(N,N,slices, 'single');
+Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+for i = 1:slices
+vol3D(:,:,i) = Im + .05*randn(size(Im)); 
+end
+vol3D(vol3D < 0) = 0;
+figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
+
+%%
+fprintf('Denoise using ROF-TV model (CPU) \n');
+lambda_rof = 0.03; % regularisation parameter
+tau_rof = 0.0025; % time-marching constant 
+iter_rof = 1000; % number of ROF iterations
+tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; 
+figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)');
+%%
+% fprintf('Denoise using ROF-TV model (GPU) \n');
+% lambda_rof = 0.03; % regularisation parameter
+% tau_rof = 0.0025; % time-marching constant 
+% iter_rof = 1000; % number of ROF iterations
+% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc;
+% figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)');
+%%
+fprintf('Denoise using FGP-TV model (CPU) \n');
+lambda_fgp = 0.03; % regularisation parameter
+iter_fgp = 500; % number of FGP iterations
+epsil_tol =  1.0e-05; % tolerance
+tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; 
+figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)');
+%%
+% fprintf('Denoise using FGP-TV model (GPU) \n');
+% lambda_fgp = 0.03; % regularisation parameter
+% iter_fgp = 500; % number of FGP iterations
+% epsil_tol =  1.0e-05; % tolerance
+% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; 
+% figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)');
+%%
\ No newline at end of file
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
index 7258e5e..ab4e95d 100644
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m
@@ -9,28 +9,28 @@ figure; imshow(u0, [0 1]); title('Noisy image');
 
 %%
 fprintf('Denoise using ROF-TV model (CPU) \n');
-lambda_rof = 0.03; % regularization parameter
+lambda_rof = 0.03; % regularisation parameter
 tau_rof = 0.0025; % time-marching constant 
 iter_rof = 2000; % number of ROF iterations
 tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; 
 figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
 %%
 % fprintf('Denoise using ROF-TV model (GPU) \n');
-% lambda_rof = 0.03; % regularization parameter
+% lambda_rof = 0.03; % regularisation parameter
 % tau_rof = 0.0025; % time-marching constant 
 % iter_rof = 2000; % number of ROF iterations
 % tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc;
 % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
 %%
 fprintf('Denoise using FGP-TV model (CPU) \n');
-lambda_fgp = 0.03; % regularization parameter
+lambda_fgp = 0.03; % regularisation parameter
 iter_fgp = 1000; % number of FGP iterations
 epsil_tol =  1.0e-05; % tolerance
 tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; 
 figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
 %%
 % fprintf('Denoise using FGP-TV model (GPU) \n');
-% lambda_fgp = 0.03; % regularization parameter
+% lambda_fgp = 0.03; % regularisation parameter
 % iter_fgp = 1000; % number of FGP iterations
 % epsil_tol =  1.0e-05; % tolerance
 % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; 
diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
index fcee53a..8da81ad 100644
--- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m
@@ -1,10 +1,10 @@
 % execute this mex file in Matlab once
-copyfile ../../../Core/regularizers_CPU/ regularizers_CPU/
-copyfile ../../../Core/CCPiDefines.h regularizers_CPU/
+copyfile ../../../Core/regularisers_CPU/ regularisers_CPU/
+copyfile ../../../Core/CCPiDefines.h regularisers_CPU/
 
-cd regularizers_CPU/
+cd regularisers_CPU/
 
-fprintf('%s \n', 'Compiling CPU regularizers...');
+fprintf('%s \n', 'Compiling CPU regularisers...');
 mex ROF_TV.c ROF_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
 movefile ROF_TV.mex* ../installed/
 
diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
index df29a3e..45236fa 100644
--- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m
+++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m
@@ -9,12 +9,12 @@
 
 % tested on Ubuntu 16.04/MATLAB 2016b
 
-copyfile ../../../Core/regularizers_GPU/ regularizers_GPU/
-copyfile ../../../Core/CCPiDefines.h regularizers_GPU/
+copyfile ../../../Core/regularisers_GPU/ regularisers_GPU/
+copyfile ../../../Core/CCPiDefines.h regularisers_GPU/
 
-cd regularizers_GPU/
+cd regularisers_GPU/
 
-fprintf('%s \n', 'Compiling GPU regularizers (CUDA)...');
+fprintf('%s \n', 'Compiling GPU regularisers (CUDA)...');
 !/usr/local/cuda/bin/nvcc -O0 -c TV_ROF_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/
 mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu ROF_TV_GPU.cpp TV_ROF_GPU_core.o
 movefile ROF_TV_GPU.mex* ../installed/
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
new file mode 100644
index 0000000..ba06cc7
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c
@@ -0,0 +1,96 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambdaPar - regularization parameter
+ * 3. Number of iterations
+ * 4. eplsilon: tolerance constant
+ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
+ * 6. nonneg: 'nonnegativity (0 is OFF by default)
+ * 7. print information: 0 (off) or 1 (on)
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ */
+
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
+    const int  *dim_array;
+    float *Input, *Output=NULL, lambda, epsil;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+    
+    Input  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter = 300; /* default iterations number */
+    epsil = 0.0001; /* default tolerance constant */
+    methTV = 0;  /* default isotropic TV penalty */
+    nonneg = 0; /* default nonnegativity switch, off - 0 */
+    printswitch = 0; /*default print is switched, off - 0 */
+    
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+    if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
+    if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7))  {
+        char *penalty_type;
+        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+        mxFree(penalty_type);
+    }
+    if ((nrhs == 6) || (nrhs == 7))  {
+        nonneg = (int) mxGetScalar(prhs[5]);
+        if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+    }
+    if (nrhs == 7)  {
+        printswitch = (int) mxGetScalar(prhs[6]);
+        if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+    }
+    
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+    }
+    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+    
+    /* running the function */
+    TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
+}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~
new file mode 100644
index 0000000..30d61cd
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~
@@ -0,0 +1,91 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambdaPar - regularization parameter
+ * 3. Number of iterations
+ * 4. eplsilon: tolerance constant
+ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
+ * 6. nonneg: 'nonnegativity (0 is OFF by default)
+ * 7. print information: 0 (off) or 1 (on)
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ */
+
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch;
+    const int  *dim_array;
+    float *Input, *Output, lambda, epsil;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch");
+    
+    Input  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter = 300; /* default iterations number */
+    epsil = 0.0001; /* default tolerance constant */
+    methTV = 0;  /* default isotropic TV penalty */
+    printswitch = 0; /*default print is switched off - 0 */
+    
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+    if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
+    if ((nrhs == 5) || (nrhs == 6))  {
+        char *penalty_type;
+        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+        mxFree(penalty_type);
+    }
+    if (nrhs == 6)  {
+        printswitch = (int) mxGetScalar(prhs[5]);
+        if ((printswitch != 0) || (printswitch != 1)) {mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); }
+    }
+    
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+    }
+    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+    
+    
+    TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ)
+}
diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
new file mode 100644
index 0000000..6b9e1ea
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/ROF_TV.c
@@ -0,0 +1,73 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "ROF_TV_core.h"
+
+/* ROF-TV denoising/regularization model [1] (2D/3D case)
+ * (MEX wrapper for MATLAB)
+ * 
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations, for explicit scheme >= 150 is recommended  [REQUIRED]
+ * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
+ *
+ * Output:
+ * [1] Regularized image/volume 
+ *
+ * This function is based on the paper by
+ * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+ *
+ * D. Kazantsev, 2016-18
+ */
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter_numb, dimX, dimY, dimZ;
+    const int  *dim_array;
+    float *Input, *Output=NULL, lambda, tau;
+    
+    dim_array = mxGetDimensions(prhs[0]);
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    Input  = (float *) mxGetData(prhs[0]);
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter_numb =  (int) mxGetScalar(prhs[2]); /* iterations number */
+    tau =  (float) mxGetScalar(prhs[3]); /* marching step parameter */  
+    
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number,  marching step constant");
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    /* output arrays*/
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        /* output image/volume */
+        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));                        
+    }    
+    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+    
+    TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);    
+}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp
new file mode 100644
index 0000000..9ed9ae0
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_TV_GPU.cpp
@@ -0,0 +1,95 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "TV_FGP_GPU_core.h"
+
+/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambdaPar - regularization parameter
+ * 3. Number of iterations
+ * 4. eplsilon: tolerance constant
+ * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
+ * 6. nonneg: 'nonnegativity (0 is OFF by default)
+ * 7. print information: 0 (off) or 1 (on)
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ */
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
+    const int  *dim_array;
+    float *Input, *Output=NULL, lambda, epsil;
+    
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    dim_array = mxGetDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
+    
+    Input  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter = 300; /* default iterations number */
+    epsil = 0.0001; /* default tolerance constant */
+    methTV = 0;  /* default isotropic TV penalty */
+    nonneg = 0; /* default nonnegativity switch, off - 0 */
+    printswitch = 0; /*default print is switched, off - 0 */
+    
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    
+    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+    if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
+    if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7))  {
+        char *penalty_type;
+        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
+        mxFree(penalty_type);
+    }
+    if ((nrhs == 6) || (nrhs == 7))  {
+        nonneg = (int) mxGetScalar(prhs[5]);
+        if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
+    }
+    if (nrhs == 7)  {
+        printswitch = (int) mxGetScalar(prhs[6]);
+        if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
+    }
+    
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+    }
+    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+    
+    /* running the function */
+    TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);    
+}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp
new file mode 100644
index 0000000..7bbe3af
--- /dev/null
+++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/ROF_TV_GPU.cpp
@@ -0,0 +1,73 @@
+/*
+ * This work is part of the Core Imaging Library developed by
+ * Visual Analytics and Imaging System Group of the Science Technology
+ * Facilities Council, STFC
+ *
+ * Copyright 2017 Daniil Kazantsev
+ * Copyright 2017 Srikanth Nagella, Edoardo Pasca
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "matrix.h"
+#include "mex.h"
+#include "TV_ROF_GPU_core.h"
+
+/* ROF-TV denoising/regularization model [1] (2D/3D case)
+ * (MEX wrapper for MATLAB)
+ * 
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations, for explicit scheme >= 150 is recommended  [REQUIRED]
+ * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
+ *
+ * Output:
+ * [1] Regularized image/volume 
+ *
+ * This function is based on the paper by
+ * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
+ *
+ * D. Kazantsev, 2016-18
+ */
+
+void mexFunction(
+        int nlhs, mxArray *plhs[],
+        int nrhs, const mxArray *prhs[])
+        
+{
+    int number_of_dims, iter_numb, dimX, dimY, dimZ;
+    const int  *dim_array;
+    float *Input, *Output=NULL, lambda, tau;
+    
+    dim_array = mxGetDimensions(prhs[0]);
+    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+    
+    /*Handling Matlab input data*/
+    Input  = (float *) mxGetData(prhs[0]);
+    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
+    iter_numb =  (int) mxGetScalar(prhs[2]); /* iterations number */
+    tau =  (float) mxGetScalar(prhs[3]); /* marching step parameter */  
+    
+    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+    if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number,  marching step constant");
+    /*Handling Matlab output data*/
+    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+    
+    /* output arrays*/
+    if (number_of_dims == 2) {
+        dimZ = 1; /*2D case*/
+        /* output image/volume */
+        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));                        
+    }    
+    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+    
+    TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);    
+}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
deleted file mode 100644
index ba06cc7..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c
+++ /dev/null
@@ -1,96 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "FGP_TV_core.h"
-
-/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-
-void mexFunction(
-        int nlhs, mxArray *plhs[],
-        int nrhs, const mxArray *prhs[])
-        
-{
-    int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
-    const int  *dim_array;
-    float *Input, *Output=NULL, lambda, epsil;
-    
-    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-    dim_array = mxGetDimensions(prhs[0]);
-    
-    /*Handling Matlab input data*/
-    if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-    
-    Input  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
-    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
-    iter = 300; /* default iterations number */
-    epsil = 0.0001; /* default tolerance constant */
-    methTV = 0;  /* default isotropic TV penalty */
-    nonneg = 0; /* default nonnegativity switch, off - 0 */
-    printswitch = 0; /*default print is switched, off - 0 */
-    
-    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-    
-    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
-    if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
-    if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7))  {
-        char *penalty_type;
-        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
-        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
-        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
-        mxFree(penalty_type);
-    }
-    if ((nrhs == 6) || (nrhs == 7))  {
-        nonneg = (int) mxGetScalar(prhs[5]);
-        if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
-    }
-    if (nrhs == 7)  {
-        printswitch = (int) mxGetScalar(prhs[6]);
-        if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
-    }
-    
-    /*Handling Matlab output data*/
-    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-    
-    if (number_of_dims == 2) {
-        dimZ = 1; /*2D case*/
-        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-    }
-    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-    
-    /* running the function */
-    TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);
-}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
deleted file mode 100644
index 6b9e1ea..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_CPU/ROF_TV.c
+++ /dev/null
@@ -1,73 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "ROF_TV_core.h"
-
-/* ROF-TV denoising/regularization model [1] (2D/3D case)
- * (MEX wrapper for MATLAB)
- * 
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations, for explicit scheme >= 150 is recommended  [REQUIRED]
- * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume 
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- *
- * D. Kazantsev, 2016-18
- */
-
-void mexFunction(
-        int nlhs, mxArray *plhs[],
-        int nrhs, const mxArray *prhs[])
-        
-{
-    int number_of_dims, iter_numb, dimX, dimY, dimZ;
-    const int  *dim_array;
-    float *Input, *Output=NULL, lambda, tau;
-    
-    dim_array = mxGetDimensions(prhs[0]);
-    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-    
-    /*Handling Matlab input data*/
-    Input  = (float *) mxGetData(prhs[0]);
-    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
-    iter_numb =  (int) mxGetScalar(prhs[2]); /* iterations number */
-    tau =  (float) mxGetScalar(prhs[3]); /* marching step parameter */  
-    
-    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-    if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number,  marching step constant");
-    /*Handling Matlab output data*/
-    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-    
-    /* output arrays*/
-    if (number_of_dims == 2) {
-        dimZ = 1; /*2D case*/
-        /* output image/volume */
-        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));                        
-    }    
-    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-    
-    TV_ROF_CPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);    
-}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp
deleted file mode 100644
index 9ed9ae0..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_GPU/FGP_TV_GPU.cpp
+++ /dev/null
@@ -1,95 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TV_FGP_GPU_core.h"
-
-/* GPU (CUDA) implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
- *
- * Input Parameters:
- * 1. Noisy image/volume
- * 2. lambdaPar - regularization parameter
- * 3. Number of iterations
- * 4. eplsilon: tolerance constant
- * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1)
- * 6. nonneg: 'nonnegativity (0 is OFF by default)
- * 7. print information: 0 (off) or 1 (on)
- *
- * Output:
- * [1] Filtered/regularized image
- *
- * This function is based on the Matlab's code and paper by
- * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
- */
-
-void mexFunction(
-        int nlhs, mxArray *plhs[],
-        int nrhs, const mxArray *prhs[])
-        
-{
-    int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg;
-    const int  *dim_array;
-    float *Input, *Output=NULL, lambda, epsil;
-    
-    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-    dim_array = mxGetDimensions(prhs[0]);
-    
-    /*Handling Matlab input data*/
-    if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch");
-    
-    Input  = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
-    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
-    iter = 300; /* default iterations number */
-    epsil = 0.0001; /* default tolerance constant */
-    methTV = 0;  /* default isotropic TV penalty */
-    nonneg = 0; /* default nonnegativity switch, off - 0 */
-    printswitch = 0; /*default print is switched, off - 0 */
-    
-    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-    
-    if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  iter = (int) mxGetScalar(prhs[2]); /* iterations number */
-    if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7))  epsil =  (float) mxGetScalar(prhs[3]); /* tolerance constant */
-    if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7))  {
-        char *penalty_type;
-        penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
-        if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
-        if (strcmp(penalty_type, "l1") == 0)  methTV = 1;  /* enable 'l1' penalty */
-        mxFree(penalty_type);
-    }
-    if ((nrhs == 6) || (nrhs == 7))  {
-        nonneg = (int) mxGetScalar(prhs[5]);
-        if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0");
-    }
-    if (nrhs == 7)  {
-        printswitch = (int) mxGetScalar(prhs[6]);
-        if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0");
-    }
-    
-    /*Handling Matlab output data*/
-    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-    
-    if (number_of_dims == 2) {
-        dimZ = 1; /*2D case*/
-        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
-    }
-    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-    
-    /* running the function */
-    TV_FGP_GPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ);    
-}
\ No newline at end of file
diff --git a/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp
deleted file mode 100644
index 7bbe3af..0000000
--- a/Wrappers/Matlab/mex_compile/regularizers_GPU/ROF_TV_GPU.cpp
+++ /dev/null
@@ -1,73 +0,0 @@
-/*
- * This work is part of the Core Imaging Library developed by
- * Visual Analytics and Imaging System Group of the Science Technology
- * Facilities Council, STFC
- *
- * Copyright 2017 Daniil Kazantsev
- * Copyright 2017 Srikanth Nagella, Edoardo Pasca
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include "matrix.h"
-#include "mex.h"
-#include "TV_ROF_GPU_core.h"
-
-/* ROF-TV denoising/regularization model [1] (2D/3D case)
- * (MEX wrapper for MATLAB)
- * 
- * Input Parameters:
- * 1. Noisy image/volume [REQUIRED]
- * 2. lambda - regularization parameter [REQUIRED]
- * 3. Number of iterations, for explicit scheme >= 150 is recommended  [REQUIRED]
- * 4. tau - marching step for explicit scheme, ~1 is recommended [REQUIRED]
- *
- * Output:
- * [1] Regularized image/volume 
- *
- * This function is based on the paper by
- * [1] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
- *
- * D. Kazantsev, 2016-18
- */
-
-void mexFunction(
-        int nlhs, mxArray *plhs[],
-        int nrhs, const mxArray *prhs[])
-        
-{
-    int number_of_dims, iter_numb, dimX, dimY, dimZ;
-    const int  *dim_array;
-    float *Input, *Output=NULL, lambda, tau;
-    
-    dim_array = mxGetDimensions(prhs[0]);
-    number_of_dims = mxGetNumberOfDimensions(prhs[0]);
-    
-    /*Handling Matlab input data*/
-    Input  = (float *) mxGetData(prhs[0]);
-    lambda =  (float) mxGetScalar(prhs[1]); /* regularization parameter */
-    iter_numb =  (int) mxGetScalar(prhs[2]); /* iterations number */
-    tau =  (float) mxGetScalar(prhs[3]); /* marching step parameter */  
-    
-    if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
-    if(nrhs != 4) mexErrMsgTxt("Four inputs reqired: Image(2D,3D), regularization parameter, iterations number,  marching step constant");
-    /*Handling Matlab output data*/
-    dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
-    
-    /* output arrays*/
-    if (number_of_dims == 2) {
-        dimZ = 1; /*2D case*/
-        /* output image/volume */
-        Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));                        
-    }    
-    if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
-    
-    TV_ROF_GPU_main(Input, Output, lambda, iter_numb, tau, dimX, dimY, dimZ);    
-}
\ No newline at end of file
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
index eb3bac7..fb00706 100644
--- a/Wrappers/Python/CMakeLists.txt
+++ b/Wrappers/Python/CMakeLists.txt
@@ -1,7 +1,7 @@
 #   Copyright 2018 Edoardo Pasca
 cmake_minimum_required (VERSION 3.0)
 
-project(RegularizerPython)
+project(regulariserPython)
 #https://stackoverflow.com/questions/13298504/using-cmake-with-setup-py
 
 # The version number.
@@ -25,8 +25,8 @@ if (PYTHONINTERP_FOUND)
 endif()
 
 	
-## Build the regularizers package as a library
-message("Creating Regularizers as shared library")
+## Build the regularisers package as a library
+message("Creating Regularisers as shared library")
 
 message("CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}")
 
@@ -52,7 +52,7 @@ elseif(UNIX)
 		)
 endif()
 
-# GPU Regularizers
+# GPU regularisers
 
 find_package(CUDA)
 if (CUDA_FOUND)
@@ -60,12 +60,12 @@ if (CUDA_FOUND)
   set (SETUP_GPU_WRAPPERS "extra_libraries += ['cilregcuda']\n\
 setup( \n\
     name='ccpi', \n\
- 	description='CCPi Core Imaging Library - Image Regularizers GPU',\n\
+ 	description='CCPi Core Imaging Library - Image regularisers GPU',\n\
  	version=cil_version,\n\
     cmdclass = {'build_ext': build_ext},\n\
-    ext_modules = [Extension('ccpi.filters.gpu_regularizers',\n\
+    ext_modules = [Extension('ccpi.filters.gpu_regularisers',\n\
                               sources=[ \n\
-                                      os.path.join('.' , 'src', 'gpu_regularizers.pyx' ),\n\
+                                      os.path.join('.' , 'src', 'gpu_regularisers.pyx' ),\n\
                                         ],\n\
                              include_dirs=extra_include_dirs, \n\
  							 library_dirs=extra_library_dirs, \n\
@@ -80,9 +80,9 @@ else()
   set(SETUP_GPU_WRAPPERS "#CUDA NOT FOUND")
 endif()
 
-configure_file("setup-regularizers.py.in" "setup-regularizers.py")
+configure_file("setup-regularisers.py.in" "setup-regularisers.py")
 
 
-#add_executable(regularizer_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regularizer.cpp)
+#add_executable(regulariser_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regulariser.cpp)
 
-#target_link_libraries (regularizer_test LINK_PUBLIC regularizers_lib)
+#target_link_libraries (regulariser_test LINK_PUBLIC regularisers_lib)
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
new file mode 100644
index 0000000..039daab
--- /dev/null
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -0,0 +1,44 @@
+"""
+script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
+"""
+
+from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU
+from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU
+
+def ROF_TV(inputData, regularisation_parameter, iterations,
+                     time_marching_parameter,device='cpu'):
+    if device == 'cpu':
+        return TV_ROF_CPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     time_marching_parameter)
+    elif device == 'gpu':
+        return TV_ROF_GPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     time_marching_parameter)
+    else:
+        raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+                         .format(device))
+
+def FGP_TV(inputData, regularisation_parameter,iterations,
+                     tolerance_param, methodTV, nonneg, printM, device='cpu'):
+    if device == 'cpu':
+        return TV_FGP_CPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     tolerance_param,
+                     methodTV,
+                     nonneg,
+                     printM)
+    elif device == 'gpu':
+        return TV_FGP_GPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     tolerance_param,
+                     methodTV,
+                     nonneg,
+                     printM)
+    else:
+        raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
+                         .format(device))
diff --git a/Wrappers/Python/ccpi/filters/regularizers.py b/Wrappers/Python/ccpi/filters/regularizers.py
deleted file mode 100644
index d6dfa8c..0000000
--- a/Wrappers/Python/ccpi/filters/regularizers.py
+++ /dev/null
@@ -1,44 +0,0 @@
-"""
-script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
-"""
-
-from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU, TV_FGP_CPU
-from ccpi.filters.gpu_regularizers import TV_ROF_GPU, TV_FGP_GPU
-
-def ROF_TV(inputData, regularization_parameter, iterations,
-                     time_marching_parameter,device='cpu'):
-    if device == 'cpu':
-        return TV_ROF_CPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     time_marching_parameter)
-    elif device == 'gpu':
-        return TV_ROF_GPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     time_marching_parameter)
-    else:
-        raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
-                         .format(device))
-
-def FGP_TV(inputData, regularization_parameter,iterations,
-                     tolerance_param, methodTV, nonneg, printM, device='cpu'):
-    if device == 'cpu':
-        return TV_FGP_CPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     tolerance_param,
-                     methodTV,
-                     nonneg,
-                     printM)
-    elif device == 'gpu':
-        return TV_FGP_GPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     tolerance_param,
-                     methodTV,
-                     nonneg,
-                     printM)
-    else:
-        raise ValueError('Unknown device {0}. Expecting gpu or cpu'\
-                         .format(device))
\ No newline at end of file
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat
index 850905c..e47f8d9 100644
--- a/Wrappers/Python/conda-recipe/bld.bat
+++ b/Wrappers/Python/conda-recipe/bld.bat
@@ -11,7 +11,7 @@ cd %SRC_DIR%\ccpi\Python
 :: issue cmake to create setup.py
 cmake . 
 
-%PYTHON% setup-regularizers.py build_ext
+%PYTHON% setup-regularisers.py build_ext
 if errorlevel 1 exit 1
-%PYTHON% setup-regularizers.py install
+%PYTHON% setup-regularisers.py install
 if errorlevel 1 exit 1
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh
index 9ea4161..8b05663 100644
--- a/Wrappers/Python/conda-recipe/build.sh
+++ b/Wrappers/Python/conda-recipe/build.sh
@@ -13,7 +13,7 @@ echo "$SRC_DIR/ccpi/Python"
 
 cmake . 
 
-$PYTHON setup-regularizers.py build_ext
-$PYTHON setup-regularizers.py install
+$PYTHON setup-regularisers.py build_ext
+$PYTHON setup-regularisers.py install
 
 
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
index f4cb471..5336d14 100644
--- a/Wrappers/Python/conda-recipe/meta.yaml
+++ b/Wrappers/Python/conda-recipe/meta.yaml
@@ -1,5 +1,5 @@
 package:
-  name: ccpi-regularizer
+  name: ccpi-regulariser
   version: {{ environ['CIL_VERSION'] }}
 
 
@@ -17,7 +17,7 @@ requirements:
     #- boost ==1.64.0
     #- boost-cpp ==1.64.0
     - cython
-    - cil_regularizer
+    - cil_regulariser
     - vc 14 # [win and py35] 
     - vc 9  # [win and py27]
     - cmake 
@@ -26,7 +26,7 @@ requirements:
     - python
     - numpy x.x
     #- boost ==1.64
-    - cil_regularizer
+    - cil_regulariser
     - vc 14 # [win and py35] 
     - vc 9  # [win and py27]
 
diff --git a/Wrappers/Python/demo/test_cpu_regularisers.py b/Wrappers/Python/demo/test_cpu_regularisers.py
new file mode 100644
index 0000000..4e4a2dd
--- /dev/null
+++ b/Wrappers/Python/demo/test_cpu_regularisers.py
@@ -0,0 +1,323 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug  4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV
+###############################################################################
+def nrmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+    max_val = max(np.max(im1), np.max(im2))
+    min_val = min(np.min(im1), np.min(im2))
+    return 1 - (rmse / (max_val - min_val))
+    
+def rmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
+    return rmse
+###############################################################################
+def printParametersToString(pars):
+        txt = r''
+        for key, value in pars.items():
+            if key== 'algorithm' :
+                txt += "{0} = {1}".format(key, value.__name__)
+            elif key == 'input':
+                txt += "{0} = {1}".format(key, np.shape(value))
+            else:
+                txt += "{0} = {1}".format(key, value)
+            txt += '\n'
+        return txt
+###############################################################################
+#
+#  2D Regularizers
+#
+###############################################################################
+# assumes the script is launched from the test directory
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+
+Im = plt.imread(filename)                     
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+
+perc = 0.075
+u0 = Im + np.random.normal(loc = Im ,
+                                  scale = perc * Im , 
+                                  size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot 
+fig = plt.figure()
+
+a=fig.add_subplot(2,4,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0,cmap="gray"
+                     )
+
+reg_output = []
+##############################################################################
+# Call regularisers
+
+###################### FGP_TV #########################################
+
+start_time = timeit.default_timer()
+pars = {'algorithm' : FGP_TV , \
+        'input' : u0,\
+        'regularisation_parameter':0.07, \
+        'number_of_iterations' :300 ,\
+        'tolerance_constant':0.00001,\
+        'methodTV': 0 ,\
+        'nonneg': 0 ,\
+        'printingOut': 0 
+        }
+
+fgp = FGP_TV(pars['input'], 
+              pars['regularisation_parameter'],
+              pars['number_of_iterations'],
+              pars['tolerance_constant'], 
+              pars['methodTV'],
+              pars['nonneg'],
+              pars['printingOut'], 'cpu')  
+
+rms = rmse(Im, fgp)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)       
+
+
+a=fig.add_subplot(2,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+imgplot = plt.imshow(fgp, \
+                     cmap="gray"
+                     )
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+
+# ###################### ROF_TV #########################################
+
+start_time = timeit.default_timer()
+
+pars = {'algorithm': ROF_TV , \
+        'input' : u0,\
+        'regularisation_parameter':0.07,\
+        'marching_step': 0.0025,\
+        'number_of_iterations': 300
+        }
+rof = ROF_TV(pars['input'],
+			 pars['regularisation_parameter'],
+             pars['number_of_iterations'],             
+             pars['marching_step'], 'cpu')
+
+rms = rmse(Im, rof)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,4,7)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof, cmap="gray")
+
+plt.show()
+
+################################################################################
+##
+##  3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+#                                        reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot 
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,4,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+##          #tolerance_constant=1e-4, 
+##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,4,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+#                          number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,4,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+##input, regularization_parameter , time_step, number_of_iterations,
+##                  tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+#                          time_step=0.0003,
+#                          tolerance_constant=0.0001,
+#                          number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,4,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:   
+##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+#                          searching_window_ratio=3,
+#                          similarity_window_ratio=1,
+#                          PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,4,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:   
+#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+#                          first_order_term=1.3,
+#                          second_order_term=1,
+#                          number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,4,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py
deleted file mode 100644
index 76b9de7..0000000
--- a/Wrappers/Python/demo/test_cpu_regularizers.py
+++ /dev/null
@@ -1,488 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug  4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os    
-from enum import Enum
-import timeit
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul, TGV_PD
-from ccpi.filters.regularizers import ROF_TV, FGP_TV
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE: 
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
-    max_val = max(np.max(im1), np.max(im2))
-    min_val = min(np.min(im1), np.min(im2))
-    return 1 - (rmse / (max_val - min_val))
-    
-def rmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
-    return rmse
-###############################################################################
-def printParametersToString(pars):
-        txt = r''
-        for key, value in pars.items():
-            if key== 'algorithm' :
-                txt += "{0} = {1}".format(key, value.__name__)
-            elif key == 'input':
-                txt += "{0} = {1}".format(key, np.shape(value))
-            else:
-                txt += "{0} = {1}".format(key, value)
-            txt += '\n'
-        return txt
-###############################################################################
-#
-#  2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-# assumes the script is launched from the test directory
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-Im = plt.imread(filename)                     
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-
-perc = 0.075
-u0 = Im + np.random.normal(loc = Im ,
-                                  scale = perc * Im , 
-                                  size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot 
-fig = plt.figure()
-
-a=fig.add_subplot(2,4,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0,cmap="gray"
-                     )
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-start_time = timeit.default_timer()
-pars = {'algorithm' : SplitBregman_TV , \
-        'input' : u0,
-        'regularization_parameter':15. , \
-        'number_of_iterations' :40 ,\
-        'tolerance_constant':0.0001 , \
-        'TV_penalty': 0
-}
-
-out = SplitBregman_TV (pars['input'], pars['regularization_parameter'],
-                              pars['number_of_iterations'],
-                              pars['tolerance_constant'],
-                              pars['TV_penalty'])  
-splitbregman = out[0]
-rms = rmse(Im, splitbregman)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars) 
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)   
-
-a=fig.add_subplot(2,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(splitbregman,\
-                     cmap="gray"
-                     )
-
-###################### FGP_TV #########################################
-
-start_time = timeit.default_timer()
-pars = {'algorithm' : FGP_TV , \
-        'input' : u0,\
-        'regularization_parameter':0.07, \
-        'number_of_iterations' :300 ,\
-        'tolerance_constant':0.00001,\
-        'methodTV': 0 ,\
-        'nonneg': 0 ,\
-        'printingOut': 0 
-        }
-
-fgp = FGP_TV(pars['input'], 
-              pars['regularization_parameter'],
-              pars['number_of_iterations'],
-              pars['tolerance_constant'], 
-              pars['methodTV'],
-              pars['nonneg'],
-              pars['printingOut'], 'cpu')  
-
-rms = rmse(Im, fgp)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)       
-
-
-a=fig.add_subplot(2,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-imgplot = plt.imshow(fgp, \
-                     cmap="gray"
-                     )
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-
-
-###################### LLT_model #########################################
-start_time = timeit.default_timer()
-
-pars = {'algorithm': LLT_model , \
-        'input' : u0,
-        'regularization_parameter': 5,\
-        'time_step':0.00035, \
-        'number_of_iterations' :350,\
-        'tolerance_constant':0.0001,\
-        'restrictive_Z_smoothing': 0
-}
-out = LLT_model(pars['input'], 
-                pars['regularization_parameter'],
-                pars['time_step'] , 
-                pars['number_of_iterations'],
-                pars['tolerance_constant'],
-                pars['restrictive_Z_smoothing'] )
-
-llt = out[0]
-rms = rmse(Im, out[0])
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(llt,\
-                     cmap="gray"
-                     )
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': PatchBased_Regul , \
-        'input' : u0,
-        'regularization_parameter': 0.05,\
-        'searching_window_ratio':3, \
-        'similarity_window_ratio':1,\
-        'PB_filtering_parameter': 0.06
-}
-out = PatchBased_Regul(pars['input'], 
-                       pars['regularization_parameter'],
-                       pars['searching_window_ratio'] , 
-                       pars['similarity_window_ratio'] , 
-                       pars['PB_filtering_parameter'])
-pbr = out[0]
-rms = rmse(Im, out[0])
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-a=fig.add_subplot(2,4,5)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(pbr ,cmap="gray")
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': TGV_PD , \
-        'input' : u0,\
-        'regularization_parameter':0.07,\
-        'first_order_term': 1.3,\
-        'second_order_term': 1, \
-        'number_of_iterations': 550
-        }
-out = TGV_PD(pars['input'],
-             pars['regularization_parameter'],
-             pars['first_order_term'] , 
-             pars['second_order_term'] , 
-             pars['number_of_iterations'])
-tgv = out[0]
-rms = rmse(Im, out[0])
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,6)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv, cmap="gray")
-
-# ###################### ROF_TV #########################################
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': ROF_TV , \
-        'input' : u0,\
-        'regularization_parameter':0.07,\
-        'marching_step': 0.0025,\
-        'number_of_iterations': 300
-        }
-rof = ROF_TV(pars['input'],
-			 pars['regularization_parameter'],
-             pars['number_of_iterations'],             
-             pars['marching_step'], 'cpu')
-
-rms = rmse(Im, rof)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,7)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof, cmap="gray")
-
-plt.show()
-
-################################################################################
-##
-##  3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-#                                        reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot 
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,4,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-##          #tolerance_constant=1e-4, 
-##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-#          tolerance_constant=1e-4, 
-#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,4,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-#                          number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,4,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-##input, regularization_parameter , time_step, number_of_iterations,
-##                  tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-#                          time_step=0.0003,
-#                          tolerance_constant=0.0001,
-#                          number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,4,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:   
-##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-#                          searching_window_ratio=3,
-#                          similarity_window_ratio=1,
-#                          PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,4,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:   
-#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-#                          first_order_term=1.3,
-#                          second_order_term=1,
-#                          number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,4,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/fista-recipe/bld.bat b/Wrappers/Python/fista-recipe/bld.bat
deleted file mode 100644
index 32c1bc6..0000000
--- a/Wrappers/Python/fista-recipe/bld.bat
+++ /dev/null
@@ -1,13 +0,0 @@
-IF NOT DEFINED CIL_VERSION (
-ECHO CIL_VERSION Not Defined.
-exit 1
-)
-
-mkdir "%SRC_DIR%\ccpifista"
-xcopy /e "%RECIPE_DIR%\.." "%SRC_DIR%\ccpifista"
-
-cd "%SRC_DIR%\ccpifista"
-::%PYTHON% setup-fista.py -q bdist_egg
-:: %PYTHON% setup.py install --single-version-externally-managed --record=record.txt
-%PYTHON% setup-fista.py install
-if errorlevel 1 exit 1
diff --git a/Wrappers/Python/fista-recipe/build.sh b/Wrappers/Python/fista-recipe/build.sh
deleted file mode 100644
index e3f3552..0000000
--- a/Wrappers/Python/fista-recipe/build.sh
+++ /dev/null
@@ -1,10 +0,0 @@
-if [ -z "$CIL_VERSION" ]; then
-    echo "Need to set CIL_VERSION"
-    exit 1
-fi  
-mkdir "$SRC_DIR/ccpifista"
-cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista"
-
-cd $SRC_DIR/ccpifista
-
-$PYTHON setup-fista.py install
diff --git a/Wrappers/Python/fista-recipe/meta.yaml b/Wrappers/Python/fista-recipe/meta.yaml
deleted file mode 100644
index 4e5cba6..0000000
--- a/Wrappers/Python/fista-recipe/meta.yaml
+++ /dev/null
@@ -1,29 +0,0 @@
-package:
-  name: ccpi-fista
-  version: {{ environ['CIL_VERSION'] }}
-
-
-build:
-  preserve_egg_dir: False
-  script_env:
-    - CIL_VERSION   
-#  number: 0
-  
-requirements:
-  build:
-    - python
-    - numpy
-    - setuptools
- 
-  run:
-    - python
-    - numpy
-    #- astra-toolbox
-    - ccpi-regularizer
-
-
-	
-about:
-  home: http://www.ccpi.ac.uk
-  license:  Apache v.2.0 license
-  summary: 'CCPi Core Imaging Library (Viewer)'
diff --git a/Wrappers/Python/setup-fista.py b/Wrappers/Python/setup-fista.py
deleted file mode 100644
index c5c9f4d..0000000
--- a/Wrappers/Python/setup-fista.py
+++ /dev/null
@@ -1,27 +0,0 @@
-from distutils.core import setup
-#from setuptools import setup, find_packages
-import os
-
-cil_version=os.environ['CIL_VERSION']
-if  cil_version == '':
-    print("Please set the environmental variable CIL_VERSION")
-    sys.exit(1)
-
-setup(
-    name="ccpi-fista",
-    version=cil_version,
-    packages=['ccpi','ccpi.reconstruction'],
-	install_requires=['numpy'],
-
-     zip_safe = False,
-
-    # metadata for upload to PyPI
-    author="Edoardo Pasca",
-    author_email="edo.paskino@gmail.com",
-    description='CCPi Core Imaging Library - FISTA Reconstructor module',
-    license="Apache v2.0",
-    keywords="tomography interative reconstruction",
-    url="http://www.ccpi.ac.uk",   # project home page, if any
-
-    # could also include long_description, download_url, classifiers, etc.
-)
diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in
new file mode 100644
index 0000000..a1c1ab6
--- /dev/null
+++ b/Wrappers/Python/setup-regularisers.py.in
@@ -0,0 +1,65 @@
+#!/usr/bin/env python
+
+import setuptools
+from distutils.core import setup
+from distutils.extension import Extension
+from Cython.Distutils import build_ext
+
+import os
+import sys
+import numpy
+import platform	
+
+cil_version=os.environ['CIL_VERSION']
+if  cil_version == '':
+    print("Please set the environmental variable CIL_VERSION")
+    sys.exit(1)
+	
+library_include_path = ""
+library_lib_path = ""
+try:
+    library_include_path = os.environ['LIBRARY_INC']
+    library_lib_path = os.environ['LIBRARY_LIB']
+except:
+    library_include_path = os.environ['PREFIX']+'/include'
+    pass
+    
+extra_include_dirs = [numpy.get_include(), library_include_path]
+#extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
+extra_compile_args = []
+extra_library_dirs = []
+extra_compile_args = []
+extra_link_args = []
+extra_libraries = ['cilreg']
+
+extra_include_dirs += [os.path.join(".." , ".." , "Core"),
+                       os.path.join(".." , ".." , "Core",  "regularisers_CPU"),
+                       os.path.join(".." , ".." , "Core",  "regularisers_GPU" , "TV_FGP" ) , 
+                       os.path.join(".." , ".." , "Core",  "regularisers_GPU" , "TV_ROF" ) , 
+						   "."]
+
+if platform.system() == 'Windows':				   
+    extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]   
+else:
+    extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
+    extra_libraries += [@EXTRA_OMP_LIB@]
+    
+setup(
+    name='ccpi',
+	description='CCPi Core Imaging Library - Image regularisers',
+	version=cil_version,
+    cmdclass = {'build_ext': build_ext},
+    ext_modules = [Extension("ccpi.filters.cpu_regularisers_cython",
+                             sources=[os.path.join("." , "src", "cpu_regularisers.pyx" ) ],
+                             include_dirs=extra_include_dirs, 
+							 library_dirs=extra_library_dirs, 
+							 extra_compile_args=extra_compile_args, 
+							 libraries=extra_libraries ), 
+    
+    ],
+	zip_safe = False,	
+	packages = {'ccpi','ccpi.filters'},
+)
+
+
+@SETUP_GPU_WRAPPERS@
diff --git a/Wrappers/Python/setup-regularizers.py.in b/Wrappers/Python/setup-regularizers.py.in
deleted file mode 100644
index 0811372..0000000
--- a/Wrappers/Python/setup-regularizers.py.in
+++ /dev/null
@@ -1,65 +0,0 @@
-#!/usr/bin/env python
-
-import setuptools
-from distutils.core import setup
-from distutils.extension import Extension
-from Cython.Distutils import build_ext
-
-import os
-import sys
-import numpy
-import platform	
-
-cil_version=os.environ['CIL_VERSION']
-if  cil_version == '':
-    print("Please set the environmental variable CIL_VERSION")
-    sys.exit(1)
-	
-library_include_path = ""
-library_lib_path = ""
-try:
-    library_include_path = os.environ['LIBRARY_INC']
-    library_lib_path = os.environ['LIBRARY_LIB']
-except:
-    library_include_path = os.environ['PREFIX']+'/include'
-    pass
-    
-extra_include_dirs = [numpy.get_include(), library_include_path]
-#extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
-extra_compile_args = []
-extra_library_dirs = []
-extra_compile_args = []
-extra_link_args = []
-extra_libraries = ['cilreg']
-
-extra_include_dirs += [os.path.join(".." , ".." , "Core"),
-                       os.path.join(".." , ".." , "Core",  "regularizers_CPU"),
-                       os.path.join(".." , ".." , "Core",  "regularizers_GPU" , "TV_FGP" ) , 
-                       os.path.join(".." , ".." , "Core",  "regularizers_GPU" , "TV_ROF" ) , 
-						   "."]
-
-if platform.system() == 'Windows':				   
-    extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]   
-else:
-    extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
-    extra_libraries += [@EXTRA_OMP_LIB@]
-    
-setup(
-    name='ccpi',
-	description='CCPi Core Imaging Library - Image Regularizers',
-	version=cil_version,
-    cmdclass = {'build_ext': build_ext},
-    ext_modules = [Extension("ccpi.filters.cpu_regularizers_cython",
-                             sources=[os.path.join("." , "src", "cpu_regularizers.pyx" ) ],
-                             include_dirs=extra_include_dirs, 
-							 library_dirs=extra_library_dirs, 
-							 extra_compile_args=extra_compile_args, 
-							 libraries=extra_libraries ), 
-    
-    ],
-	zip_safe = False,	
-	packages = {'ccpi','ccpi.filters'},
-)
-
-
-@SETUP_GPU_WRAPPERS@
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
new file mode 100644
index 0000000..248bad1
--- /dev/null
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -0,0 +1,126 @@
+# distutils: language=c++
+"""
+Copyright 2018 CCPi
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+    http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+Author: Edoardo Pasca, Daniil Kazantsev
+"""
+
+import cython
+import numpy as np
+cimport numpy as np
+
+cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
+cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
+
+
+#****************************************************************#
+#********************** Total-variation ROF *********************#
+#****************************************************************#
+def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter):
+    if inputData.ndim == 2:
+        return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
+    elif inputData.ndim == 3:
+        return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter)
+
+def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterationsNumb,                     
+                     float marching_step_parameter):
+    cdef long dims[2]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    
+    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+            np.zeros([dims[0],dims[1]], dtype='float32')
+                   
+    # Run ROF iterations for 2D data 
+    TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
+    
+    return outputData
+            
+def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
+                     int iterationsNumb,
+                     float regularisation_parameter,
+                     float marching_step_parameter):
+    cdef long dims[3]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    dims[2] = inputData.shape[2]
+    
+    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+           
+    # Run ROF iterations for 3D data 
+    TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
+
+    return outputData
+
+#****************************************************************#
+#********************** Total-variation FGP *********************#
+#****************************************************************#
+#******** Total-variation Fast-Gradient-Projection (FGP)*********#
+def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
+    if inputData.ndim == 2:
+        return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
+    elif inputData.ndim == 3:
+        return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
+
+def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterationsNumb, 
+                     float tolerance_param,
+                     int methodTV,
+                     int nonneg,
+                     int printM):
+                         
+    cdef long dims[2]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    
+    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+            np.zeros([dims[0],dims[1]], dtype='float32')
+                   
+    #/* Run ROF iterations for 2D data */
+    TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, 
+                       iterationsNumb, 
+                       tolerance_param,
+                       methodTV,
+                       nonneg,
+                       printM,
+                       dims[0], dims[1], 1)
+    
+    return outputData        
+            
+def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterationsNumb, 
+                     float tolerance_param,
+                     int methodTV,
+                     int nonneg,
+                     int printM):
+    cdef long dims[3]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    dims[2] = inputData.shape[2]
+    
+    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+           
+    #/* Run ROF iterations for 3D data */
+    TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
+                       iterationsNumb, 
+                       tolerance_param,
+                       methodTV,
+                       nonneg,
+                       printM,
+                       dims[0], dims[1], dims[2])
+    return outputData 
diff --git a/Wrappers/Python/src/cpu_regularizers.pyx b/Wrappers/Python/src/cpu_regularizers.pyx
deleted file mode 100644
index f993e54..0000000
--- a/Wrappers/Python/src/cpu_regularizers.pyx
+++ /dev/null
@@ -1,126 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-    http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
-cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
-
-
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def TV_ROF_CPU(inputData, regularization_parameter, iterationsNumb, marching_step_parameter):
-    if inputData.ndim == 2:
-        return TV_ROF_2D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
-    elif inputData.ndim == 3:
-        return TV_ROF_3D(inputData, regularization_parameter, iterationsNumb, marching_step_parameter)
-
-def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterationsNumb,                     
-                     float marching_step_parameter):
-    cdef long dims[2]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    
-    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
-            np.zeros([dims[0],dims[1]], dtype='float32')
-                   
-    # Run ROF iterations for 2D data 
-    TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1)
-    
-    return outputData
-            
-def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
-                     int iterationsNumb,
-                     float regularization_parameter,
-                     float marching_step_parameter):
-    cdef long dims[3]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    dims[2] = inputData.shape[2]
-    
-    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
-            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-           
-    # Run ROF iterations for 3D data 
-    TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], dims[2])
-
-    return outputData
-
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def TV_FGP_CPU(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM):
-    if inputData.ndim == 2:
-        return TV_FGP_2D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
-    elif inputData.ndim == 3:
-        return TV_FGP_3D(inputData, regularization_parameter, iterationsNumb, tolerance_param, methodTV, nonneg, printM)
-
-def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterationsNumb, 
-                     float tolerance_param,
-                     int methodTV,
-                     int nonneg,
-                     int printM):
-                         
-    cdef long dims[2]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    
-    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
-            np.zeros([dims[0],dims[1]], dtype='float32')
-                   
-    #/* Run ROF iterations for 2D data */
-    TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularization_parameter, 
-                       iterationsNumb, 
-                       tolerance_param,
-                       methodTV,
-                       nonneg,
-                       printM,
-                       dims[0], dims[1], 1)
-    
-    return outputData        
-            
-def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterationsNumb, 
-                     float tolerance_param,
-                     int methodTV,
-                     int nonneg,
-                     int printM):
-    cdef long dims[3]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    dims[2] = inputData.shape[2]
-    
-    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
-            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
-           
-    #/* Run ROF iterations for 3D data */
-    TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularization_parameter,
-                       iterationsNumb, 
-                       tolerance_param,
-                       methodTV,
-                       nonneg,
-                       printM,
-                       dims[0], dims[1], dims[2])
-    return outputData 
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
new file mode 100644
index 0000000..7ebd011
--- /dev/null
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -0,0 +1,170 @@
+# distutils: language=c++
+"""
+Copyright 2018 CCPi
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+    http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+Author: Edoardo Pasca, Daniil Kazantsev
+"""
+
+import cython
+import numpy as np
+cimport numpy as np
+
+cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
+cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+
+# Total-variation Rudin-Osher-Fatemi (ROF)
+def TV_ROF_GPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     time_marching_parameter):
+    if inputData.ndim == 2:
+        return ROFTV2D(inputData, 
+                     regularisation_parameter,
+                     iterations,
+                     time_marching_parameter)
+    elif inputData.ndim == 3:
+        return ROFTV3D(inputData, 
+                     regularisation_parameter,
+                     iterations, 
+                     time_marching_parameter)
+                     
+# Total-variation Fast-Gradient-Projection (FGP)
+def TV_FGP_GPU(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     tolerance_param,
+                     methodTV,
+                     nonneg,
+                     printM):
+    if inputData.ndim == 2:
+        return FGPTV2D(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     tolerance_param,
+                     methodTV,
+                     nonneg,
+                     printM)
+    elif inputData.ndim == 3:
+        return FGPTV3D(inputData,
+                     regularisation_parameter,
+                     iterations, 
+                     tolerance_param,
+                     methodTV,
+                     nonneg,
+                     printM)
+                     
+#****************************************************************#
+#********************** Total-variation ROF *********************#
+#****************************************************************#
+def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterations, 
+                     float time_marching_parameter):
+    
+    cdef long dims[2]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+
+    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+		    np.zeros([dims[0],dims[1]], dtype='float32')
+          
+    # Running CUDA code here    
+    TV_ROF_GPU_main(            
+            &inputData[0,0], &outputData[0,0], 
+                       regularisation_parameter,
+                       iterations , 
+                       time_marching_parameter, 
+                       dims[0], dims[1], 1);   
+     
+    return outputData
+    
+def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterations, 
+                     float time_marching_parameter):
+    
+    cdef long dims[3]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    dims[2] = inputData.shape[2]
+
+    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+		    np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+          
+    # Running CUDA code here    
+    TV_ROF_GPU_main(            
+            &inputData[0,0,0], &outputData[0,0,0], 
+                       regularisation_parameter,
+                       iterations , 
+                       time_marching_parameter, 
+                       dims[0], dims[1], dims[2]);   
+     
+    return outputData
+#****************************************************************#
+#********************** Total-variation FGP *********************#
+#****************************************************************#
+#******** Total-variation Fast-Gradient-Projection (FGP)*********#
+def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterations, 
+                     float tolerance_param,
+                     int methodTV,
+                     int nonneg,
+                     int printM):
+    
+    cdef long dims[2]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+
+    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+		    np.zeros([dims[0],dims[1]], dtype='float32')
+          
+    # Running CUDA code here    
+    TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],                        
+                       regularisation_parameter, 
+                       iterations, 
+                       tolerance_param,
+                       methodTV,
+                       nonneg,
+                       printM,
+                       dims[0], dims[1], 1);   
+     
+    return outputData
+    
+def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
+                     float regularisation_parameter,
+                     int iterations, 
+                     float tolerance_param,
+                     int methodTV,
+                     int nonneg,
+                     int printM):
+    
+    cdef long dims[3]
+    dims[0] = inputData.shape[0]
+    dims[1] = inputData.shape[1]
+    dims[2] = inputData.shape[2]
+
+    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+		    np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+          
+    # Running CUDA code here    
+    TV_FGP_GPU_main(            
+            &inputData[0,0,0], &outputData[0,0,0], 
+                       regularisation_parameter , 
+                       iterations, 
+                       tolerance_param,
+                       methodTV,
+                       nonneg,
+                       printM,
+                       dims[0], dims[1], dims[2]);   
+     
+    return outputData    
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx
deleted file mode 100644
index a44bd1d..0000000
--- a/Wrappers/Python/src/gpu_regularizers.pyx
+++ /dev/null
@@ -1,170 +0,0 @@
-# distutils: language=c++
-"""
-Copyright 2018 CCPi
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-    http://www.apache.org/licenses/LICENSE-2.0
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-Author: Edoardo Pasca, Daniil Kazantsev
-"""
-
-import cython
-import numpy as np
-cimport numpy as np
-
-cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
-cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
-
-# Total-variation Rudin-Osher-Fatemi (ROF)
-def TV_ROF_GPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     time_marching_parameter):
-    if inputData.ndim == 2:
-        return ROFTV2D(inputData, 
-                     regularization_parameter,
-                     iterations,
-                     time_marching_parameter)
-    elif inputData.ndim == 3:
-        return ROFTV3D(inputData, 
-                     regularization_parameter,
-                     iterations, 
-                     time_marching_parameter)
-                     
-# Total-variation Fast-Gradient-Projection (FGP)
-def TV_FGP_GPU(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     tolerance_param,
-                     methodTV,
-                     nonneg,
-                     printM):
-    if inputData.ndim == 2:
-        return FGPTV2D(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     tolerance_param,
-                     methodTV,
-                     nonneg,
-                     printM)
-    elif inputData.ndim == 3:
-        return FGPTV3D(inputData,
-                     regularization_parameter,
-                     iterations, 
-                     tolerance_param,
-                     methodTV,
-                     nonneg,
-                     printM)
-                     
-#****************************************************************#
-#********************** Total-variation ROF *********************#
-#****************************************************************#
-def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterations, 
-                     float time_marching_parameter):
-    
-    cdef long dims[2]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-
-    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
-		    np.zeros([dims[0],dims[1]], dtype='float32')
-          
-    # Running CUDA code here    
-    TV_ROF_GPU_main(            
-            &inputData[0,0], &outputData[0,0], 
-                       regularization_parameter,
-                       iterations , 
-                       time_marching_parameter, 
-                       dims[0], dims[1], 1);   
-     
-    return outputData
-    
-def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterations, 
-                     float time_marching_parameter):
-    
-    cdef long dims[3]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    dims[2] = inputData.shape[2]
-
-    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
-		    np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-          
-    # Running CUDA code here    
-    TV_ROF_GPU_main(            
-            &inputData[0,0,0], &outputData[0,0,0], 
-                       regularization_parameter,
-                       iterations , 
-                       time_marching_parameter, 
-                       dims[0], dims[1], dims[2]);   
-     
-    return outputData
-#****************************************************************#
-#********************** Total-variation FGP *********************#
-#****************************************************************#
-#******** Total-variation Fast-Gradient-Projection (FGP)*********#
-def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterations, 
-                     float tolerance_param,
-                     int methodTV,
-                     int nonneg,
-                     int printM):
-    
-    cdef long dims[2]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-
-    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
-		    np.zeros([dims[0],dims[1]], dtype='float32')
-          
-    # Running CUDA code here    
-    TV_FGP_GPU_main(&inputData[0,0], &outputData[0,0],                        
-                       regularization_parameter, 
-                       iterations, 
-                       tolerance_param,
-                       methodTV,
-                       nonneg,
-                       printM,
-                       dims[0], dims[1], 1);   
-     
-    return outputData
-    
-def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, 
-                     float regularization_parameter,
-                     int iterations, 
-                     float tolerance_param,
-                     int methodTV,
-                     int nonneg,
-                     int printM):
-    
-    cdef long dims[3]
-    dims[0] = inputData.shape[0]
-    dims[1] = inputData.shape[1]
-    dims[2] = inputData.shape[2]
-
-    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
-		    np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
-          
-    # Running CUDA code here    
-    TV_FGP_GPU_main(            
-            &inputData[0,0,0], &outputData[0,0,0], 
-                       regularization_parameter , 
-                       iterations, 
-                       tolerance_param,
-                       methodTV,
-                       nonneg,
-                       printM,
-                       dims[0], dims[1], dims[2]);   
-     
-    return outputData    
diff --git a/Wrappers/Python/test/test_cpu_regularisers.py b/Wrappers/Python/test/test_cpu_regularisers.py
new file mode 100644
index 0000000..9713baa
--- /dev/null
+++ b/Wrappers/Python/test/test_cpu_regularisers.py
@@ -0,0 +1,442 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug  4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
+                                                 LLT_model, PatchBased_Regul ,\
+                                                 TGV_PD
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE: 
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+    max_val = max(np.max(im1), np.max(im2))
+    min_val = min(np.min(im1), np.min(im2))
+    return 1 - (rmse / (max_val - min_val))
+###############################################################################
+def printParametersToString(pars):
+        txt = r''
+        for key, value in pars.items():
+            if key== 'algorithm' :
+                txt += "{0} = {1}".format(key, value.__name__)
+            elif key == 'input':
+                txt += "{0} = {1}".format(key, np.shape(value))
+            else:
+                txt += "{0} = {1}".format(key, value)
+            txt += '\n'
+        return txt
+###############################################################################
+#
+#  2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+# assumes the script is launched from the test directory
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+Im = plt.imread(filename)                     
+Im = np.asarray(Im, dtype='float32')
+
+perc = 0.15
+u0 = Im + np.random.normal(loc = Im ,
+                                  scale = perc * Im , 
+                                  size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot 
+fig = plt.figure()
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0#,cmap="gray"
+                     )
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+start_time = timeit.default_timer()
+pars = {'algorithm' : SplitBregman_TV , \
+        'input' : u0,
+        'regularization_parameter':10. , \
+'number_of_iterations' :35 ,\
+'tolerance_constant':0.0001 , \
+'TV_penalty': 0
+}
+
+out = SplitBregman_TV (pars['input'], pars['regularization_parameter'],
+                              pars['number_of_iterations'],
+                              pars['tolerance_constant'],
+                              pars['TV_penalty'])  
+splitbregman = out[0]
+txtstr = printParametersToString(pars) 
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+    
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(splitbregman,\
+                     #cmap="gray"
+                     )
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+start_time = timeit.default_timer()
+pars = {'algorithm' : FGP_TV , \
+        'input' : u0,
+        'regularization_parameter':5e-4, \
+        'number_of_iterations' :10 ,\
+        'tolerance_constant':0.001,\
+        'TV_penalty': 0
+}
+
+out = FGP_TV (pars['input'], 
+              pars['regularization_parameter'],
+              pars['number_of_iterations'],
+              pars['tolerance_constant'], 
+              pars['TV_penalty'])  
+
+fgp = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)       
+
+
+a=fig.add_subplot(2,3,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+imgplot = plt.imshow(fgp, \
+                     #cmap="gray"
+                     )
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+
+###################### LLT_model #########################################
+
+start_time = timeit.default_timer()
+
+pars = {'algorithm': LLT_model , \
+        'input' : u0,
+        'regularization_parameter': 25,\
+        'time_step':0.0003, \
+        'number_of_iterations' :300,\
+        'tolerance_constant':0.001,\
+        'restrictive_Z_smoothing': 0
+}
+out = LLT_model(pars['input'], 
+                pars['regularization_parameter'],
+                pars['time_step'] , 
+                pars['number_of_iterations'],
+                pars['tolerance_constant'],
+                pars['restrictive_Z_smoothing'] )
+
+llt = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,3,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(llt,\
+                     #cmap="gray"
+                     )
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+start_time = timeit.default_timer()
+
+pars = {'algorithm': PatchBased_Regul , \
+        'input' : u0,
+        'regularization_parameter': 0.05,\
+        'searching_window_ratio':3, \
+        'similarity_window_ratio':1,\
+        'PB_filtering_parameter': 0.08
+}
+out = PatchBased_Regul(pars['input'], 
+                       pars['regularization_parameter'],
+                       pars['searching_window_ratio'] , 
+                       pars['similarity_window_ratio'] , 
+                       pars['PB_filtering_parameter'])
+pbr = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+
+a=fig.add_subplot(2,3,5)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(pbr #,cmap="gray"
+                     )
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+start_time = timeit.default_timer()
+
+pars = {'algorithm': TGV_PD , \
+        'input' : u0,\
+        'regularization_parameter':0.05,\
+        'first_order_term': 1.3,\
+        'second_order_term': 1, \
+        'number_of_iterations': 550
+        }
+out = TGV_PD(pars['input'],
+             pars['regularization_parameter'],
+             pars['first_order_term'] , 
+             pars['second_order_term'] , 
+             pars['number_of_iterations'])
+tgv = out[0]
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,3,6)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(tgv #, cmap="gray")
+                     )
+
+
+plt.show()
+
+################################################################################
+##
+##  3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+#                                        reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot 
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+##          #tolerance_constant=1e-4, 
+##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+#                          number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+##input, regularization_parameter , time_step, number_of_iterations,
+##                  tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+#                          time_step=0.0003,
+#                          tolerance_constant=0.0001,
+#                          number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:   
+##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+#                          searching_window_ratio=3,
+#                          similarity_window_ratio=1,
+#                          PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:   
+#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+#                          first_order_term=1.3,
+#                          second_order_term=1,
+#                          number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_cpu_regularizers.py b/Wrappers/Python/test/test_cpu_regularizers.py
deleted file mode 100644
index 9713baa..0000000
--- a/Wrappers/Python/test/test_cpu_regularizers.py
+++ /dev/null
@@ -1,442 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug  4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os    
-from enum import Enum
-import timeit
-from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV , FGP_TV ,\
-                                                 LLT_model, PatchBased_Regul ,\
-                                                 TGV_PD
-
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE: 
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
-    max_val = max(np.max(im1), np.max(im2))
-    min_val = min(np.min(im1), np.min(im2))
-    return 1 - (rmse / (max_val - min_val))
-###############################################################################
-def printParametersToString(pars):
-        txt = r''
-        for key, value in pars.items():
-            if key== 'algorithm' :
-                txt += "{0} = {1}".format(key, value.__name__)
-            elif key == 'input':
-                txt += "{0} = {1}".format(key, np.shape(value))
-            else:
-                txt += "{0} = {1}".format(key, value)
-            txt += '\n'
-        return txt
-###############################################################################
-#
-#  2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-# assumes the script is launched from the test directory
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-Im = plt.imread(filename)                     
-Im = np.asarray(Im, dtype='float32')
-
-perc = 0.15
-u0 = Im + np.random.normal(loc = Im ,
-                                  scale = perc * Im , 
-                                  size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot 
-fig = plt.figure()
-
-a=fig.add_subplot(2,3,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0#,cmap="gray"
-                     )
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-start_time = timeit.default_timer()
-pars = {'algorithm' : SplitBregman_TV , \
-        'input' : u0,
-        'regularization_parameter':10. , \
-'number_of_iterations' :35 ,\
-'tolerance_constant':0.0001 , \
-'TV_penalty': 0
-}
-
-out = SplitBregman_TV (pars['input'], pars['regularization_parameter'],
-                              pars['number_of_iterations'],
-                              pars['tolerance_constant'],
-                              pars['TV_penalty'])  
-splitbregman = out[0]
-txtstr = printParametersToString(pars) 
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-    
-
-a=fig.add_subplot(2,3,2)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(splitbregman,\
-                     #cmap="gray"
-                     )
-
-###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-start_time = timeit.default_timer()
-pars = {'algorithm' : FGP_TV , \
-        'input' : u0,
-        'regularization_parameter':5e-4, \
-        'number_of_iterations' :10 ,\
-        'tolerance_constant':0.001,\
-        'TV_penalty': 0
-}
-
-out = FGP_TV (pars['input'], 
-              pars['regularization_parameter'],
-              pars['number_of_iterations'],
-              pars['tolerance_constant'], 
-              pars['TV_penalty'])  
-
-fgp = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)       
-
-
-a=fig.add_subplot(2,3,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-imgplot = plt.imshow(fgp, \
-                     #cmap="gray"
-                     )
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-
-###################### LLT_model #########################################
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': LLT_model , \
-        'input' : u0,
-        'regularization_parameter': 25,\
-        'time_step':0.0003, \
-        'number_of_iterations' :300,\
-        'tolerance_constant':0.001,\
-        'restrictive_Z_smoothing': 0
-}
-out = LLT_model(pars['input'], 
-                pars['regularization_parameter'],
-                pars['time_step'] , 
-                pars['number_of_iterations'],
-                pars['tolerance_constant'],
-                pars['restrictive_Z_smoothing'] )
-
-llt = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(llt,\
-                     #cmap="gray"
-                     )
-
-
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-start_time = timeit.default_timer()
-
-pars = {'algorithm': PatchBased_Regul , \
-        'input' : u0,
-        'regularization_parameter': 0.05,\
-        'searching_window_ratio':3, \
-        'similarity_window_ratio':1,\
-        'PB_filtering_parameter': 0.08
-}
-out = PatchBased_Regul(pars['input'], 
-                       pars['regularization_parameter'],
-                       pars['searching_window_ratio'] , 
-                       pars['similarity_window_ratio'] , 
-                       pars['PB_filtering_parameter'])
-pbr = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-a=fig.add_subplot(2,3,5)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(pbr #,cmap="gray"
-                     )
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-start_time = timeit.default_timer()
-
-pars = {'algorithm': TGV_PD , \
-        'input' : u0,\
-        'regularization_parameter':0.05,\
-        'first_order_term': 1.3,\
-        'second_order_term': 1, \
-        'number_of_iterations': 550
-        }
-out = TGV_PD(pars['input'],
-             pars['regularization_parameter'],
-             pars['first_order_term'] , 
-             pars['second_order_term'] , 
-             pars['number_of_iterations'])
-tgv = out[0]
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,6)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(tgv #, cmap="gray")
-                     )
-
-
-plt.show()
-
-################################################################################
-##
-##  3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-#                                        reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot 
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,3,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-##          #tolerance_constant=1e-4, 
-##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-#          tolerance_constant=1e-4, 
-#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-#                          number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-##input, regularization_parameter , time_step, number_of_iterations,
-##                  tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-#                          time_step=0.0003,
-#                          tolerance_constant=0.0001,
-#                          number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:   
-##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-#                          searching_window_ratio=3,
-#                          similarity_window_ratio=1,
-#                          PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:   
-#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-#                          first_order_term=1.3,
-#                          second_order_term=1,
-#                          number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py
new file mode 100644
index 0000000..15e9042
--- /dev/null
+++ b/Wrappers/Python/test/test_cpu_vs_gpu_regularisers.py
@@ -0,0 +1,219 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Feb 22 11:39:43 2018
+
+Testing CPU implementation against the GPU one
+
+@author: Daniil Kazantsev
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV
+
+###############################################################################
+def printParametersToString(pars):
+        txt = r''
+        for key, value in pars.items():
+            if key== 'algorithm' :
+                txt += "{0} = {1}".format(key, value.__name__)
+            elif key == 'input':
+                txt += "{0} = {1}".format(key, np.shape(value))
+            else:
+                txt += "{0} = {1}".format(key, value)
+            txt += '\n'
+        return txt
+###############################################################################
+def rmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
+    return rmse
+        
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+
+# read image
+Im = plt.imread(filename)                     
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.075
+u0 = Im + np.random.normal(loc = Im ,
+                                  scale = perc * Im , 
+                                  size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________ROF-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot 
+fig = plt.figure(1)
+plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm': ROF_TV, \
+        'input' : u0,\
+        'regularisation_parameter':0.04,\
+        'number_of_iterations': 1200,\
+        'time_marching_parameter': 0.0025        
+        }
+print ("#############ROF TV CPU####################")
+start_time = timeit.default_timer()
+rof_cpu = ROF_TV(pars['input'],
+             pars['regularisation_parameter'],
+             pars['number_of_iterations'],
+             pars['time_marching_parameter'],'cpu')
+rms = rmse(Im, rof_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############ROF TV GPU##################")
+start_time = timeit.default_timer()
+rof_gpu = ROF_TV(pars['input'], 
+                     pars['regularisation_parameter'],
+                     pars['number_of_iterations'], 
+                     pars['time_marching_parameter'],'gpu')
+                     
+rms = rmse(Im, rof_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = ROF_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(rof_cpu - rof_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+    print ("Arrays do not match!")
+else:
+    print ("Arrays match")
+
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("____________FGP-TV bench___________________")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot 
+fig = plt.figure(2)
+plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations')
+a=fig.add_subplot(1,4,1)
+a.set_title('Noisy Image')
+imgplot = plt.imshow(u0,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : FGP_TV, \
+        'input' : u0,\
+        'regularisation_parameter':0.04, \
+        'number_of_iterations' :1200 ,\
+        'tolerance_constant':0.00001,\
+        'methodTV': 0 ,\
+        'nonneg': 0 ,\
+        'printingOut': 0 
+        }
+        
+print ("#############FGP TV CPU####################")
+start_time = timeit.default_timer()
+fgp_cpu = FGP_TV(pars['input'], 
+              pars['regularisation_parameter'],
+              pars['number_of_iterations'],
+              pars['tolerance_constant'], 
+              pars['methodTV'],
+              pars['nonneg'],
+              pars['printingOut'],'cpu')  
+             
+             
+rms = rmse(Im, fgp_cpu)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_cpu, cmap="gray")
+plt.title('{}'.format('CPU results'))
+
+
+print ("##############FGP TV GPU##################")
+start_time = timeit.default_timer()
+fgp_gpu = FGP_TV(pars['input'], 
+              pars['regularisation_parameter'],
+              pars['number_of_iterations'],
+              pars['tolerance_constant'], 
+              pars['methodTV'],
+              pars['nonneg'],
+              pars['printingOut'],'gpu')
+                                   
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+pars['algorithm'] = FGP_TV
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,4,3)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+plt.title('{}'.format('GPU results'))
+
+
+print ("--------Compare the results--------")
+tolerance = 1e-05
+diff_im = np.zeros(np.shape(rof_cpu))
+diff_im = abs(fgp_cpu - fgp_gpu)
+diff_im[diff_im > tolerance] = 1
+a=fig.add_subplot(1,4,4)
+imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
+plt.title('{}'.format('Pixels larger threshold difference'))
+if (diff_im.sum() > 1):
+    print ("Arrays do not match!")
+else:
+    print ("Arrays match")
+
+
diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py
deleted file mode 100644
index 63be1a0..0000000
--- a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py
+++ /dev/null
@@ -1,219 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Feb 22 11:39:43 2018
-
-Testing CPU implementation against the GPU one
-
-@author: Daniil Kazantsev
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os
-import timeit
-from ccpi.filters.regularizers import ROF_TV, FGP_TV
-
-###############################################################################
-def printParametersToString(pars):
-        txt = r''
-        for key, value in pars.items():
-            if key== 'algorithm' :
-                txt += "{0} = {1}".format(key, value.__name__)
-            elif key == 'input':
-                txt += "{0} = {1}".format(key, np.shape(value))
-            else:
-                txt += "{0} = {1}".format(key, value)
-            txt += '\n'
-        return txt
-###############################################################################
-def rmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
-    return rmse
-        
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-
-# read image
-Im = plt.imread(filename)                     
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.075
-u0 = Im + np.random.normal(loc = Im ,
-                                  scale = perc * Im , 
-                                  size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________ROF-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot 
-fig = plt.figure(1)
-plt.suptitle('Comparison of ROF-TV regularizer using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm': ROF_TV, \
-        'input' : u0,\
-        'regularization_parameter':0.04,\
-        'number_of_iterations': 1200,\
-        'time_marching_parameter': 0.0025        
-        }
-print ("#############ROF TV CPU####################")
-start_time = timeit.default_timer()
-rof_cpu = ROF_TV(pars['input'],
-             pars['regularization_parameter'],
-             pars['number_of_iterations'],
-             pars['time_marching_parameter'],'cpu')
-rms = rmse(Im, rof_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############ROF TV GPU##################")
-start_time = timeit.default_timer()
-rof_gpu = ROF_TV(pars['input'], 
-                     pars['regularization_parameter'],
-                     pars['number_of_iterations'], 
-                     pars['time_marching_parameter'],'gpu')
-                     
-rms = rmse(Im, rof_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = ROF_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(rof_cpu - rof_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
-    print ("Arrays do not match!")
-else:
-    print ("Arrays match")
-
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-print ("____________FGP-TV bench___________________")
-print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
-
-## plot 
-fig = plt.figure(2)
-plt.suptitle('Comparison of FGP-TV regularizer using CPU and GPU implementations')
-a=fig.add_subplot(1,4,1)
-a.set_title('Noisy Image')
-imgplot = plt.imshow(u0,cmap="gray")
-
-# set parameters
-pars = {'algorithm' : FGP_TV, \
-        'input' : u0,\
-        'regularization_parameter':0.04, \
-        'number_of_iterations' :1200 ,\
-        'tolerance_constant':0.00001,\
-        'methodTV': 0 ,\
-        'nonneg': 0 ,\
-        'printingOut': 0 
-        }
-        
-print ("#############FGP TV CPU####################")
-start_time = timeit.default_timer()
-fgp_cpu = FGP_TV(pars['input'], 
-              pars['regularization_parameter'],
-              pars['number_of_iterations'],
-              pars['tolerance_constant'], 
-              pars['methodTV'],
-              pars['nonneg'],
-              pars['printingOut'],'cpu')  
-             
-             
-rms = rmse(Im, fgp_cpu)
-pars['rmse'] = rms
-
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_cpu, cmap="gray")
-plt.title('{}'.format('CPU results'))
-
-
-print ("##############FGP TV GPU##################")
-start_time = timeit.default_timer()
-fgp_gpu = FGP_TV(pars['input'], 
-              pars['regularization_parameter'],
-              pars['number_of_iterations'],
-              pars['tolerance_constant'], 
-              pars['methodTV'],
-              pars['nonneg'],
-              pars['printingOut'],'gpu')
-                                   
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-pars['algorithm'] = FGP_TV
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(1,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-plt.title('{}'.format('GPU results'))
-
-
-print ("--------Compare the results--------")
-tolerance = 1e-05
-diff_im = np.zeros(np.shape(rof_cpu))
-diff_im = abs(fgp_cpu - fgp_gpu)
-diff_im[diff_im > tolerance] = 1
-a=fig.add_subplot(1,4,4)
-imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray")
-plt.title('{}'.format('Pixels larger threshold difference'))
-if (diff_im.sum() > 1):
-    print ("Arrays do not match!")
-else:
-    print ("Arrays match")
-
-
diff --git a/Wrappers/Python/test/test_gpu_regularisers.py b/Wrappers/Python/test/test_gpu_regularisers.py
new file mode 100644
index 0000000..2103c0e
--- /dev/null
+++ b/Wrappers/Python/test/test_gpu_regularisers.py
@@ -0,0 +1,143 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Jan 30 10:24:26 2018
+
+@author: ofn77899
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+from ccpi.filters.regularisers import ROF_TV, FGP_TV
+###############################################################################
+def printParametersToString(pars):
+        txt = r''
+        for key, value in pars.items():
+            if key== 'algorithm' :
+                txt += "{0} = {1}".format(key, value.__name__)
+            elif key == 'input':
+                txt += "{0} = {1}".format(key, np.shape(value))
+            else:
+                txt += "{0} = {1}".format(key, value)
+            txt += '\n'
+        return txt
+###############################################################################
+def rmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
+    return rmse
+        
+filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
+
+Im = plt.imread(filename)                     
+Im = np.asarray(Im, dtype='float32')
+
+Im = Im/255
+perc = 0.075
+u0 = Im + np.random.normal(loc = Im ,
+                                  scale = perc * Im , 
+                                  size = np.shape(Im))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot 
+fig = plt.figure()
+
+a=fig.add_subplot(2,4,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0,cmap="gray")
+
+
+        
+## Rudin-Osher-Fatemi (ROF) TV regularisation
+start_time = timeit.default_timer()
+pars = {
+'algorithm' : ROF_TV , \
+        'input' : u0,
+        'regularisation_parameter': 0.04,\
+        'number_of_iterations':300,\
+        'time_marching_parameter': 0.0025
+        
+	}
+	
+rof_tv = TV_ROF_GPU(pars['input'], 
+                     pars['regularisation_parameter'],
+                     pars['number_of_iterations'], 
+                     pars['time_marching_parameter'],'gpu')
+                     
+rms = rmse(Im, rof_tv)
+pars['rmse'] = rms
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,4,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(rof_tv, cmap="gray")
+
+a=fig.add_subplot(2,4,8)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, 'rof_tv - u0', transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow((rof_tv - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
+plt.show()
+
+## Fast-Gradient Projection TV regularisation
+"""
+start_time = timeit.default_timer()
+
+pars = {'algorithm' : FGP_TV, \
+        'input' : u0,\
+        'regularisation_parameter':0.04, \
+        'number_of_iterations' :1200 ,\
+        'tolerance_constant':0.00001,\
+        'methodTV': 0 ,\
+        'nonneg': 0 ,\
+        'printingOut': 0 
+        }
+
+fgp_gpu = FGP_TV(pars['input'], 
+              pars['regularisation_parameter'],
+              pars['number_of_iterations'],
+              pars['tolerance_constant'], 
+              pars['methodTV'],
+              pars['nonneg'],
+              pars['printingOut'],'gpu')
+                                   
+rms = rmse(Im, fgp_gpu)
+pars['rmse'] = rms
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(2,4,4)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(fgp_gpu, cmap="gray")
+
+a=fig.add_subplot(2,4,8)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, 'fgp_gpu - u0', transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow((fgp_gpu - u0)**2, vmin=0, vmax=0.03, cmap="gray")
+plt.colorbar(ticks=[0, 0.03], orientation='vertical')
+plt.show()
+"""
diff --git a/Wrappers/Python/test/test_gpu_regularizers.py b/Wrappers/Python/test/test_gpu_regularizers.py
deleted file mode 100644
index 640b3f9..0000000
--- a/Wrappers/Python/test/test_gpu_regularizers.py
+++ /dev/null
@@ -1,239 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Tue Jan 30 10:24:26 2018
-
-@author: ofn77899
-"""
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os    
-from enum import Enum
-import timeit
-from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML
-from ccpi.filters.regularizers import ROF_TV, FGP_TV
-###############################################################################
-def printParametersToString(pars):
-        txt = r''
-        for key, value in pars.items():
-            if key== 'algorithm' :
-                txt += "{0} = {1}".format(key, value.__name__)
-            elif key == 'input':
-                txt += "{0} = {1}".format(key, np.shape(value))
-            else:
-                txt += "{0} = {1}".format(key, value)
-            txt += '\n'
-        return txt
-###############################################################################
-def rmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))    
-    return rmse
-        
-filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif")
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-Im = plt.imread(filename)                     
-Im = np.asarray(Im, dtype='float32')
-
-Im = Im/255
-perc = 0.075
-u0 = Im + np.random.normal(loc = Im ,
-                                  scale = perc * Im , 
-                                  size = np.shape(Im))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot 
-fig = plt.figure()
-
-a=fig.add_subplot(2,4,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0,cmap="gray")
-
-
-## Diff4thHajiaboli
-start_time = timeit.default_timer()
-pars = {
-'algorithm' : Diff4thHajiaboli , \
-        'input' : u0,
-        'edge_preserv_parameter':0.1 , \
-'number_of_iterations' :250 ,\
-'time_marching_parameter':0.03 ,\
-'regularization_parameter':0.7
-}
-
-
-d4h = Diff4thHajiaboli(pars['input'], 
-                     pars['edge_preserv_parameter'], 
-                     pars['number_of_iterations'], 
-                     pars['time_marching_parameter'],
-                     pars['regularization_parameter'])
-rms = rmse(Im, d4h)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,2)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(d4h, cmap="gray")
-
-a=fig.add_subplot(2,4,6)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'd4h - u0', transform=a.transAxes, fontsize=12,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow((d4h - u0)**2,  vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-
-
-## Patch Based Regul NML
-start_time = timeit.default_timer()
-"""
-pars = {'algorithm' : NML , \
-        'input' : u0,
-        'SearchW_real':3 , \
-'SimilW' :1,\
-'h':0.05 ,#
-'lambda' : 0.08
-}
-"""
-pars = {
-'algorithm' : NML , \
-        'input' : u0,
-        'regularization_parameter': 0.01,\
-        'searching_window_ratio':3, \
-        'similarity_window_ratio':1,\
-        'PB_filtering_parameter': 0.2
-}
-
-nml = NML(pars['input'], 
-                     pars['searching_window_ratio'], 
-                     pars['similarity_window_ratio'], 
-                     pars['PB_filtering_parameter'],
-                     pars['regularization_parameter'])
-rms = rmse(Im, nml)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(nml, cmap="gray")
-
-a=fig.add_subplot(2,4,7)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'nml - u0', transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow((nml - u0)**2,  vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-
-        
-        
-## Rudin-Osher-Fatemi (ROF) TV regularization
-start_time = timeit.default_timer()
-pars = {
-'algorithm' : ROF_TV , \
-        'input' : u0,
-        'regularization_parameter': 0.04,\
-        'number_of_iterations':300,\
-        'time_marching_parameter': 0.0025
-        
-	}
-	
-rof_tv = TV_ROF_GPU(pars['input'], 
-                     pars['regularization_parameter'],
-                     pars['number_of_iterations'], 
-                     pars['time_marching_parameter'],'gpu')
-                     
-rms = rmse(Im, rof_tv)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(rof_tv, cmap="gray")
-
-a=fig.add_subplot(2,4,8)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'rof_tv - u0', transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow((rof_tv - u0)**2, vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-plt.show()
-
-## Fast-Gradient Projection TV regularization
-"""
-start_time = timeit.default_timer()
-
-pars = {'algorithm' : FGP_TV, \
-        'input' : u0,\
-        'regularization_parameter':0.04, \
-        'number_of_iterations' :1200 ,\
-        'tolerance_constant':0.00001,\
-        'methodTV': 0 ,\
-        'nonneg': 0 ,\
-        'printingOut': 0 
-        }
-
-fgp_gpu = FGP_TV(pars['input'], 
-              pars['regularization_parameter'],
-              pars['number_of_iterations'],
-              pars['tolerance_constant'], 
-              pars['methodTV'],
-              pars['nonneg'],
-              pars['printingOut'],'gpu')
-                                   
-rms = rmse(Im, fgp_gpu)
-pars['rmse'] = rms
-txtstr = printParametersToString(pars)
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,4,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
-# place a text box in upper left in axes coords
-a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(fgp_gpu, cmap="gray")
-
-a=fig.add_subplot(2,4,8)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, 'fgp_gpu - u0', transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow((fgp_gpu - u0)**2, vmin=0, vmax=0.03, cmap="gray")
-plt.colorbar(ticks=[0, 0.03], orientation='vertical')
-plt.show()
-"""
diff --git a/Wrappers/Python/test/test_regularisers_3d.py b/Wrappers/Python/test/test_regularisers_3d.py
new file mode 100644
index 0000000..2d11a7e
--- /dev/null
+++ b/Wrappers/Python/test/test_regularisers_3d.py
@@ -0,0 +1,425 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug  4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os    
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE: 
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+    a, b = im1.shape
+    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+    max_val = max(np.max(im1), np.max(im2))
+    min_val = min(np.min(im1), np.min(im2))
+    return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+#  2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)                     
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+# create a 3D image by stacking N of this images
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+y,z = np.shape(u_n)
+u_n = np.reshape(u_n , (1,y,z))
+
+u0 = u_n.copy()
+for i in range (19):
+    u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+    u_n = np.reshape(u_n , (1,y,z))
+
+    u0 = np.vstack ( (u0, u_n) )
+
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+print ("Passed image shape {0}".format(np.shape(u0)))
+
+## plot 
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+sliceno = 10
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0[sliceno],cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+    reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+    print (reg.pars)
+    reg.setParameter(input=u0)    
+    reg.setParameter(regularization_parameter=10.)
+    # or 
+    # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+              #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    plotme = reg() [0]
+    pars = reg.pars
+    textstr = reg.printParametersToString() 
+    
+    #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+              #tolerance_constant=1e-4, 
+    #          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+    
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+    out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+    pars = out2[2]
+    reg_output.append(out2)
+    plotme = reg_output[-1][0]
+    textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme[sliceno],cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+                          number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+#input, regularization_parameter , time_step, number_of_iterations,
+#                  tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+                          time_step=0.0003,
+                          tolerance_constant=0.0001,
+                          number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+                       searching_window_ratio=3,
+                       similarity_window_ratio=1,
+                       PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+        verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:   
+# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+                           first_order_term=1.3,
+                           second_order_term=1,
+                           number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+         verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+##  3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+#                                        reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot 
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+##          #tolerance_constant=1e-4, 
+##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+#          tolerance_constant=1e-4, 
+#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+#                          number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
+##input, regularization_parameter , time_step, number_of_iterations,
+##                  tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+#                          time_step=0.0003,
+#                          tolerance_constant=0.0001,
+#                          number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:   
+##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+#                          searching_window_ratio=3,
+#                          similarity_window_ratio=1,
+#                          PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:   
+#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
+#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+#                          first_order_term=1.3,
+#                          second_order_term=1,
+#                          number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+#        verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py
deleted file mode 100644
index cf5da2b..0000000
--- a/Wrappers/Python/test/test_regularizers.py
+++ /dev/null
@@ -1,395 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug  4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-#from ccpi.viewer.CILViewer2D import Converter
-#import vtk
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os    
-from enum import Enum
-import timeit
-#from PIL import Image
-#from Regularizer import Regularizer
-from ccpi.filters.Regularizer import Regularizer
-
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE: 
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
-    max_val = max(np.max(im1), np.max(im2))
-    min_val = min(np.min(im1), np.min(im2))
-    return 1 - (rmse / (max_val - min_val))
-###############################################################################
-
-###############################################################################
-#
-#  2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-
-filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-#filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-#reader = vtk.vtkTIFFReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-Im = plt.imread(filename)                     
-#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
-#img.show()
-Im = np.asarray(Im, dtype='float32')
-
-
-
-
-#imgplot = plt.imshow(Im)
-perc = 0.05
-u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-## plot 
-fig = plt.figure()
-#a=fig.add_subplot(3,3,1)
-#a.set_title('Original')
-#imgplot = plt.imshow(Im)
-
-a=fig.add_subplot(2,3,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0,cmap="gray")
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-start_time = timeit.default_timer()
-reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-print (reg.pars)
-reg.setParameter(input=u0)    
-reg.setParameter(regularization_parameter=10.)
-# or 
-# reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
-          #tolerance_constant=1e-4, 
-          #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-plotme = reg(output_all=True) [0]
-pars = reg.pars
-txtstr = reg.printParametersToString() 
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-    
-
-a=fig.add_subplot(2,3,2)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(plotme,cmap="gray")
-
-###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-start_time = timeit.default_timer()
-reg = Regularizer(Regularizer.Algorithm.FGP_TV)
-out2 = reg(input=u0, regularization_parameter=5e-4,
-                          number_of_iterations=10)
-txtstr = reg.printParametersToString()
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)       
-
-
-a=fig.add_subplot(2,3,3)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-imgplot = plt.imshow(out2,cmap="gray")
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-
-###################### LLT_model #########################################
-# * u0 = Im + .03*randn(size(Im)); % adding noise
-# [Den] = LLT_model(single(u0), 10, 0.1, 1);
-#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-#input, regularization_parameter , time_step, number_of_iterations,
-#                  tolerance_constant, restrictive_Z_smoothing=0
-
-del out2
-start_time = timeit.default_timer()
-reg = Regularizer(Regularizer.Algorithm.LLT_model)
-out2 = reg(input=u0, regularization_parameter=25,
-                          time_step=0.0003,
-                          tolerance_constant=0.001,
-                          number_of_iterations=300)
-txtstr = reg.printParametersToString()
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,4)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(out2,cmap="gray")
-
-
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-start_time = timeit.default_timer()
-reg = Regularizer(Regularizer.Algorithm.PatchBased_Regul)
-out2 = reg(input=u0, regularization_parameter=0.05,
-                       searching_window_ratio=3,
-                       similarity_window_ratio=1,
-                       PB_filtering_parameter=0.08)
-txtstr = reg.printParametersToString()
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-
-a=fig.add_subplot(2,3,5)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(out2,cmap="gray")
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-start_time = timeit.default_timer()
-reg = Regularizer(Regularizer.Algorithm.TGV_PD)
-out2 = reg(input=u0, regularization_parameter=0.05,
-                           first_order_term=1.3,
-                           second_order_term=1,
-                           number_of_iterations=550)
-txtstr = reg.printParametersToString()
-txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
-print (txtstr)
-a=fig.add_subplot(2,3,6)
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, txtstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(out2,cmap="gray")
-
-
-plt.show()
-
-################################################################################
-##
-##  3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-#                                        reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot 
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,3,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-##          #tolerance_constant=1e-4, 
-##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-#          tolerance_constant=1e-4, 
-#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-#                          number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-##input, regularization_parameter , time_step, number_of_iterations,
-##                  tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-#                          time_step=0.0003,
-#                          tolerance_constant=0.0001,
-#                          number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:   
-##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-#                          searching_window_ratio=3,
-#                          similarity_window_ratio=1,
-#                          PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:   
-#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-#                          first_order_term=1.3,
-#                          second_order_term=1,
-#                          number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_regularizers_3d.py b/Wrappers/Python/test/test_regularizers_3d.py
deleted file mode 100644
index 2d11a7e..0000000
--- a/Wrappers/Python/test/test_regularizers_3d.py
+++ /dev/null
@@ -1,425 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Aug  4 11:10:05 2017
-
-@author: ofn77899
-"""
-
-#from ccpi.viewer.CILViewer2D import Converter
-#import vtk
-
-import matplotlib.pyplot as plt
-import numpy as np
-import os    
-from enum import Enum
-import timeit
-#from PIL import Image
-#from Regularizer import Regularizer
-from ccpi.imaging.Regularizer import Regularizer
-
-###############################################################################
-#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
-#NRMSE a normalization of the root of the mean squared error
-#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
-# intensity from the two images being compared, and respectively the same for
-# minval. RMSE is given by the square root of MSE: 
-# sqrt[(sum(A - B) ** 2) / |A|],
-# where |A| means the number of elements in A. By doing this, the maximum value
-# given by RMSE is maxval.
-
-def nrmse(im1, im2):
-    a, b = im1.shape
-    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
-    max_val = max(np.max(im1), np.max(im2))
-    min_val = min(np.min(im1), np.min(im2))
-    return 1 - (rmse / (max_val - min_val))
-###############################################################################
-
-###############################################################################
-#
-#  2D Regularizers
-#
-###############################################################################
-#Example:
-# figure;
-# Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
-filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
-#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
-
-#reader = vtk.vtkTIFFReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-Im = plt.imread(filename)                     
-#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
-#img.show()
-Im = np.asarray(Im, dtype='float32')
-
-# create a 3D image by stacking N of this images
-
-
-#imgplot = plt.imshow(Im)
-perc = 0.05
-u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
-y,z = np.shape(u_n)
-u_n = np.reshape(u_n , (1,y,z))
-
-u0 = u_n.copy()
-for i in range (19):
-    u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
-    u_n = np.reshape(u_n , (1,y,z))
-
-    u0 = np.vstack ( (u0, u_n) )
-
-# map the u0 u0->u0>0
-f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-u0 = f(u0).astype('float32')
-
-print ("Passed image shape {0}".format(np.shape(u0)))
-
-## plot 
-fig = plt.figure()
-#a=fig.add_subplot(3,3,1)
-#a.set_title('Original')
-#imgplot = plt.imshow(Im)
-sliceno = 10
-
-a=fig.add_subplot(2,3,1)
-a.set_title('noise')
-imgplot = plt.imshow(u0[sliceno],cmap="gray")
-
-reg_output = []
-##############################################################################
-# Call regularizer
-
-####################### SplitBregman_TV #####################################
-# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-
-use_object = True
-if use_object:
-    reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-    print (reg.pars)
-    reg.setParameter(input=u0)    
-    reg.setParameter(regularization_parameter=10.)
-    # or 
-    # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
-              #tolerance_constant=1e-4, 
-              #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-    plotme = reg() [0]
-    pars = reg.pars
-    textstr = reg.printParametersToString() 
-    
-    #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-              #tolerance_constant=1e-4, 
-    #          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-    
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-#          tolerance_constant=1e-4, 
-#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-
-else:
-    out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
-    pars = out2[2]
-    reg_output.append(out2)
-    plotme = reg_output[-1][0]
-    textstr = out2[-1]
-
-a=fig.add_subplot(2,3,2)
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(plotme[sliceno],cmap="gray")
-
-###################### FGP_TV #########################################
-# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
-                          number_of_iterations=50)
-pars = out2[-2]
-
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,3)
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno])
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-###################### LLT_model #########################################
-# * u0 = Im + .03*randn(size(Im)); % adding noise
-# [Den] = LLT_model(single(u0), 10, 0.1, 1);
-#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-#input, regularization_parameter , time_step, number_of_iterations,
-#                  tolerance_constant, restrictive_Z_smoothing=0
-out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-                          time_step=0.0003,
-                          tolerance_constant=0.0001,
-                          number_of_iterations=300)
-pars = out2[-2]
-
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,4)
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-# ###################### PatchBased_Regul #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-
-out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-                       searching_window_ratio=3,
-                       similarity_window_ratio=1,
-                       PB_filtering_parameter=0.08)
-pars = out2[-2]
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,5)
-
-
-textstr = out2[-1]
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-        verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-# ###################### TGV_PD #########################################
-# # Quick 2D denoising example in Matlab:   
-# #   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-# #   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-# #   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-                           first_order_term=1.3,
-                           second_order_term=1,
-                           number_of_iterations=550)
-pars = out2[-2]
-reg_output.append(out2)
-
-a=fig.add_subplot(2,3,6)
-
-
-textstr = out2[-1]
-
-
-# these are matplotlib.patch.Patch properties
-props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-# place a text box in upper left in axes coords
-a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-         verticalalignment='top', bbox=props)
-imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
-
-
-plt.show()
-
-################################################################################
-##
-##  3D Regularizers
-##
-################################################################################
-##Example:
-## figure;
-## Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
-#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
-#
-#reader = vtk.vtkMetaImageReader()
-#reader.SetFileName(os.path.normpath(filename))
-#reader.Update()
-##vtk returns 3D images, let's take just the one slice there is as 2D
-#Im = Converter.vtk2numpy(reader.GetOutput())
-#Im = Im.astype('float32')
-##imgplot = plt.imshow(Im)
-#perc = 0.05
-#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
-## map the u0 u0->u0>0
-#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
-#u0 = f(u0).astype('float32')
-#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
-#                                        reader.GetOutput().GetOrigin())
-#converter.Update()
-#writer = vtk.vtkMetaImageWriter()
-#writer.SetInputData(converter.GetOutput())
-#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
-##writer.Write()
-#
-#
-### plot 
-#fig3D = plt.figure()
-##a=fig.add_subplot(3,3,1)
-##a.set_title('Original')
-##imgplot = plt.imshow(Im)
-#sliceNo = 32
-#
-#a=fig3D.add_subplot(2,3,1)
-#a.set_title('noise')
-#imgplot = plt.imshow(u0.T[sliceNo])
-#
-#reg_output3d = []
-#
-###############################################################################
-## Call regularizer
-#
-######################## SplitBregman_TV #####################################
-## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
-#
-##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
-#
-##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
-##          #tolerance_constant=1e-4, 
-##          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
-#          tolerance_constant=1e-4, 
-#          TV_Penalty=Regularizer.TotalVariationPenalty.l1)
-#
-#
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### FGP_TV #########################################
-## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
-#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
-#                          number_of_iterations=200)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### LLT_model #########################################
-## * u0 = Im + .03*randn(size(Im)); % adding noise
-## [Den] = LLT_model(single(u0), 10, 0.1, 1);
-##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); 
-##input, regularization_parameter , time_step, number_of_iterations,
-##                  tolerance_constant, restrictive_Z_smoothing=0
-#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
-#                          time_step=0.0003,
-#                          tolerance_constant=0.0001,
-#                          number_of_iterations=300)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-####################### PatchBased_Regul #########################################
-## Quick 2D denoising example in Matlab:   
-##   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-##   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-##   ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); 
-#
-#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
-#                          searching_window_ratio=3,
-#                          similarity_window_ratio=1,
-#                          PB_filtering_parameter=0.08)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-#
-
-###################### TGV_PD #########################################
-# Quick 2D denoising example in Matlab:   
-#   Im = double(imread('lena_gray_256.tif'))/255;  % loading image
-#   u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
-#   u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
-
-
-#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
-#                          first_order_term=1.3,
-#                          second_order_term=1,
-#                          number_of_iterations=550)
-#pars = out2[-2]
-#reg_output3d.append(out2)
-#
-#a=fig3D.add_subplot(2,3,2)
-#
-#
-#textstr = out2[-1]
-#
-#
-## these are matplotlib.patch.Patch properties
-#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
-## place a text box in upper left in axes coords
-#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
-#        verticalalignment='top', bbox=props)
-#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
-- 
cgit v1.2.3