From 4505a79103e98adb33bfb4c10391319e56ae7031 Mon Sep 17 00:00:00 2001 From: Tomas Kulhanek Date: Fri, 22 Feb 2019 06:44:53 -0500 Subject: UPDATE: docs -> demos and update paths in m and py demos --- demos/data/SinoInpaint.mat | Bin 0 -> 3335061 bytes demos/data/lena_gray_512.tif | Bin 0 -> 262598 bytes demos/demoMatlab_3Ddenoise.m | 178 ++++++++ demos/demoMatlab_denoise.m | 189 ++++++++ demos/demoMatlab_inpaint.m | 35 ++ demos/demo_cpu_inpainters.py | 192 +++++++++ demos/demo_cpu_regularisers.py | 572 ++++++++++++++++++++++++ demos/demo_cpu_regularisers3D.py | 458 ++++++++++++++++++++ demos/demo_cpu_vs_gpu_regularisers.py | 790 ++++++++++++++++++++++++++++++++++ demos/demo_gpu_regularisers.py | 518 ++++++++++++++++++++++ demos/demo_gpu_regularisers3D.py | 460 ++++++++++++++++++++ demos/images/TV_vs_NLTV.jpg | Bin 0 -> 111273 bytes demos/images/probl.pdf | Bin 0 -> 62326 bytes demos/images/probl.png | Bin 0 -> 38161 bytes demos/images/reg_penalties.jpg | Bin 0 -> 237455 bytes demos/qualitymetrics.py | 18 + 16 files changed, 3410 insertions(+) create mode 100644 demos/data/SinoInpaint.mat create mode 100644 demos/data/lena_gray_512.tif create mode 100644 demos/demoMatlab_3Ddenoise.m create mode 100644 demos/demoMatlab_denoise.m create mode 100644 demos/demoMatlab_inpaint.m create mode 100644 demos/demo_cpu_inpainters.py create mode 100644 demos/demo_cpu_regularisers.py create mode 100644 demos/demo_cpu_regularisers3D.py create mode 100644 demos/demo_cpu_vs_gpu_regularisers.py create mode 100644 demos/demo_gpu_regularisers.py create mode 100644 demos/demo_gpu_regularisers3D.py create mode 100644 demos/images/TV_vs_NLTV.jpg create mode 100644 demos/images/probl.pdf create mode 100644 demos/images/probl.png create mode 100644 demos/images/reg_penalties.jpg create mode 100644 demos/qualitymetrics.py (limited to 'demos') diff --git a/demos/data/SinoInpaint.mat b/demos/data/SinoInpaint.mat new file mode 100644 index 0000000..d748fb4 Binary files /dev/null and b/demos/data/SinoInpaint.mat differ diff --git a/demos/data/lena_gray_512.tif b/demos/data/lena_gray_512.tif new file mode 100644 index 0000000..f80cafc Binary files /dev/null and b/demos/data/lena_gray_512.tif differ diff --git a/demos/demoMatlab_3Ddenoise.m b/demos/demoMatlab_3Ddenoise.m new file mode 100644 index 0000000..cdd3117 --- /dev/null +++ b/demos/demoMatlab_3Ddenoise.m @@ -0,0 +1,178 @@ +% Volume (3D) denoising demo using CCPi-RGL +clear; close all +Path1 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'mex_compile' filesep 'installed'], 1i); +Path2 = sprintf(['data' filesep], 1i); +Path3 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'supp'], 1i); +addpath(Path1); +addpath(Path2); +addpath(Path3); + +N = 512; +slices = 7; +vol3D = zeros(N,N,slices, 'single'); +Ideal3D = zeros(N,N,slices, 'single'); +Im = double(imread('lena_gray_512.tif'))/255; % loading image +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +Ideal3D(:,:,i) = Im; +end +vol3D(vol3D < 0) = 0; +figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); + + +lambda_reg = 0.03; % regularsation parameter for all methods +%% +fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); +tau_rof = 0.0025; % time-marching constant +iter_rof = 300; % number of ROF iterations +tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value +rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); +fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); +figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 300; % number of ROF iterations +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc; +% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:))); +% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG); +% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value +rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); +fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); +figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); +% iter_fgp = 300; % number of FGP iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:))); +% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); +% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-05; % tolerance +tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value +rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); +fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); +figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:))); +% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); +% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the ROF-LLT model (CPU) \n'); +lambda_ROF = lambda_reg; % ROF regularisation parameter +lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter +iter_LLT = 300; % iterations +tau_rof_llt = 0.0025; % time-marching constant +tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); +fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); +figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n'); +% lambda_ROF = lambda_reg; % ROF regularisation parameter +% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter +% iter_LLT = 300; % iterations +% tau_rof_llt = 0.0025; % time-marching constant +% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); +% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); +% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); +%% +fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter +tau_param = 0.025; % time-marching constant +tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); +fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); +figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter +% tau_param = 0.025; % time-marching constant +% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); +% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); +% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); +%% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0015; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); +fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); +figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0015; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); +% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); +% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); +%% +fprintf('Denoise using the TGV model (CPU) \n'); +lambda_TGV = 0.03; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +iter_TGV = 500; % number of Primal-Dual iterations for TGV +tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % +fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); +%% +fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); +%% diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m new file mode 100644 index 0000000..2031853 --- /dev/null +++ b/demos/demoMatlab_denoise.m @@ -0,0 +1,189 @@ +% Image (2D) denoising demo using CCPi-RGL +clear; close all +fsep = '/'; + +Path1 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i); +Path2 = sprintf([ data' fsep], 1i); +Path3 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'supp'], 1i); +addpath(Path1); addpath(Path2); addpath(Path3); + +Im = double(imread('lena_gray_512.tif'))/255; % loading image +u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +figure; imshow(u0, [0 1]); title('Noisy image'); + +lambda_reg = 0.03; % regularsation parameter for all methods +%% +fprintf('Denoise using the ROF-TV model (CPU) \n'); +tau_rof = 0.0025; % time-marching constant +iter_rof = 750; % number of ROF iterations +tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value +rmseROF = (RMSE(u_rof(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); +figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the ROF-TV model (GPU) \n'); +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 750; % number of ROF iterations +% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc; +% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); +%% +fprintf('Denoise using the FGP-TV model (CPU) \n'); +iter_fgp = 1000; % number of FGP iterations +epsil_tol = 1.0e-06; % tolerance +tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value +rmseFGP = (RMSE(u_fgp(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); +figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); + +%% +% fprintf('Denoise using the FGP-TV model (GPU) \n'); +% iter_fgp = 1000; % number of FGP iterations +% epsil_tol = 1.0e-05; % tolerance +% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; +% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); +%% +fprintf('Denoise using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 1.0e-06; % tolerance +tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value +rmseSB = (RMSE(u_sb(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); +figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 1.0e-06; % tolerance +% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); +%% +fprintf('Denoise using the TGV model (CPU) \n'); +lambda_TGV = 0.045; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +iter_TGV = 2000; % number of Primal-Dual iterations for TGV +tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +rmseTGV = (RMSE(u_tgv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); +%% +% fprintf('Denoise using the TGV model (GPU) \n'); +% lambda_TGV = 0.045; % regularisation parameter +% alpha1 = 1.0; % parameter to control the first-order term +% alpha0 = 2.0; % parameter to control the second-order term +% iter_TGV = 2000; % number of Primal-Dual iterations for TGV +% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; +% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); +% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); +% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); +%% +fprintf('Denoise using the ROF-LLT model (CPU) \n'); +lambda_ROF = lambda_reg; % ROF regularisation parameter +lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter +iter_LLT = 1; % iterations +tau_rof_llt = 0.0025; % time-marching constant +tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); +figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); +%% +% fprintf('Denoise using the ROF-LLT model (GPU) \n'); +% lambda_ROF = lambda_reg; % ROF regularisation parameter +% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter +% iter_LLT = 500; % iterations +% tau_rof_llt = 0.0025; % time-marching constant +% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc; +% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:))); +% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g); +% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); +%% +fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 800; % number of diffusion iterations +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter +tau_param = 0.025; % time-marching constant +tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +rmseDiffus = (RMSE(u_diff(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); +figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); +%% +% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); +% iter_diff = 800; % number of diffusion iterations +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter +% tau_param = 0.025; % time-marching constant +% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); +%% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 800; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0015; % time-marching constant +tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +rmseDiffHO = (RMSE(u_diff4(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); +figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 800; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0015; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); +%% +fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); +SearchingWindow = 7; +PatchWindow = 2; +NeighboursNumber = 20; % the number of neibours to include +h = 0.23; % edge related parameter for NLM +tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc; +%% +fprintf('Denoise using Non-local Total Variation (CPU) \n'); +iter_nltv = 3; % number of nltv iterations +lambda_nltv = 0.05; % regularisation parameter for nltv +tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; +rmse_nltv = (RMSE(u_nltv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); +figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % + +fprintf('Denoise using the FGP-dTV model (CPU) \n'); +% create another image (reference) with slightly less amount of noise +u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +iter_fgp = 1000; % number of FGP iterations +epsil_tol = 1.0e-06; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV); +figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); +%% +% fprintf('Denoise using the FGP-dTV model (GPU) \n'); +% % create another image (reference) with slightly less amount of noise +% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) +% +% iter_fgp = 1000; % number of FGP iterations +% epsil_tol = 1.0e-06; % tolerance +% eta = 0.2; % Reference image gradient smoothing constant +% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); +%% +fprintf('Denoise using the TNV prior (CPU) \n'); +slices = 5; N = 512; +vol3D = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +end +vol3D(vol3D < 0) = 0; + +iter_tnv = 200; % number of TNV iterations +tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; +figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); diff --git a/demos/demoMatlab_inpaint.m b/demos/demoMatlab_inpaint.m new file mode 100644 index 0000000..a85f2b9 --- /dev/null +++ b/demos/demoMatlab_inpaint.m @@ -0,0 +1,35 @@ +% Image (2D) inpainting demo using CCPi-RGL +clear; close all +Path1 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'mex_compile' filesep 'installed'], 1i); +Path2 = sprintf(['data' filesep], 1i); +addpath(Path1); +addpath(Path2); + +load('SinoInpaint.mat'); +Sinogram = Sinogram./max(Sinogram(:)); +Sino_mask = Sinogram.*(1-single(Mask)); +figure; +subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram'); +subplot(1,2,2); imshow(Mask, [0 1]); title('Mask'); +%% +fprintf('Inpaint using Linear-Diffusion model (CPU) \n'); +iter_diff = 5000; % number of diffusion iterations +lambda_regDiff = 6000; % regularisation for the diffusivity +sigmaPar = 0.0; % edge-preserving parameter +tau_param = 0.000075; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 1500; % number of diffusion iterations +lambda_regDiff = 80; % regularisation for the diffusivity +sigmaPar = 0.00009; % edge-preserving parameter +tau_param = 0.000008; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n'); +Increment = 1; % linear increment for the searching window +tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc; +figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)'); +%% \ No newline at end of file diff --git a/demos/demo_cpu_inpainters.py b/demos/demo_cpu_inpainters.py new file mode 100644 index 0000000..d07e74a --- /dev/null +++ b/demos/demo_cpu_inpainters.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Demonstration of CPU inpainters +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from scipy import io +from ccpi.filters.regularisers import NDF_INP, NVM_INP +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'maskData': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +# read sinogram and the mask +filename = os.path.join("data" ,"SinoInpaint.mat") +sino = io.loadmat(filename) +sino_full = sino.get('Sinogram') +Mask = sino.get('Mask') +[angles_dim,detectors_dim] = sino_full.shape +sino_full = sino_full/np.max(sino_full) +#apply mask to sinogram +sino_cut = sino_full*(1-Mask) +#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32') +#sino_cut_new = sino_cut.copy(order='c') +#sino_cut_new[:] = sino_cut[:] +sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32); +#mask = np.zeros((angles_dim,detectors_dim),'uint8') +#mask =Mask.copy(order='c') +#mask[:] = Mask[:] +mask = np.ascontiguousarray(Mask, dtype=np.uint8); + +plt.figure(1) +plt.subplot(121) +plt.imshow(sino_cut_new,vmin=0.0, vmax=1) +plt.title('Missing Data sinogram') +plt.subplot(122) +plt.imshow(mask) +plt.title('Mask') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Inpainting using linear diffusion (2D)__") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Performance of linear inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':5000,\ + 'edge_parameter':0,\ + 'number_of_iterations' :5000 ,\ + 'time_marching_parameter':0.000075,\ + 'penalty_type':0 + } + +start_time = timeit.default_timer() +ndf_inp_linear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_linear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_linear, cmap="gray") +plt.title('{}'.format('Linear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_Inpainting using nonlinear diffusion (2D)_") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':80,\ + 'edge_parameter':0.00009,\ + 'number_of_iterations' :1500 ,\ + 'time_marching_parameter':0.000008,\ + 'penalty_type':1 + } + +start_time = timeit.default_timer() +ndf_inp_nonlinear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_nonlinear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray") +plt.title('{}'.format('Nonlinear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Inpainting using nonlocal vertical marching") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of NVM inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut,cmap="gray") + +# set parameters +pars = {'algorithm' : NVM_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'SW_increment': 1,\ + 'number_of_iterations' : 150 + } + +start_time = timeit.default_timer() +(nvm_inp, mask_upd) = NVM_INP(pars['input'], + pars['maskData'], + pars['SW_increment'], + pars['number_of_iterations']) + +rms = rmse(sino_full, nvm_inp) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(nvm_inp, cmap="gray") +plt.title('{}'.format('Nonlocal Vertical Marching inpainting results')) +#%% diff --git a/demos/demo_cpu_regularisers.py b/demos/demo_cpu_regularisers.py new file mode 100644 index 0000000..373502b --- /dev/null +++ b/demos/demo_cpu_regularisers.py @@ -0,0 +1,572 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of CPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, TNV, NDF, Diff4th +from ccpi.filters.regularisers import PatchSelect, NLTV +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### +#%% +filename = os.path.join( "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255.0 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) +(N,M) = np.shape(u0) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') + +# change dims to check that modules work with non-squared images +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (2D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of ROF-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 1200,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(Im, rof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________SB-TV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of SB-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : SB_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :150 ,\ + 'tolerance_constant':1e-06,\ + 'methodTV': 0 ,\ + 'printingOut': 0 + } + +print ("#############SB TV CPU####################") +start_time = timeit.default_timer() +sb_cpu = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, sb_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) +#%% + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_____Total Generalised Variation (2D)______") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :1350 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_cpu = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'cpu') + + +rms = rmse(Im, tgv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("______________LLT- ROF (2D)________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of LLT-ROF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : LLT_ROF, \ + 'input' : u0,\ + 'regularisation_parameterROF':0.04, \ + 'regularisation_parameterLLT':0.01, \ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter' :0.0025 ,\ + } + +print ("#############LLT- ROF CPU####################") +start_time = timeit.default_timer() +lltrof_cpu = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') + +rms = rmse(Im, lltrof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("________________NDF (2D)___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of NDF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.025, \ + 'edge_parameter':0.015,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type':1 + } + +print ("#############NDF CPU################") +start_time = timeit.default_timer() +ndf_cpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'cpu') + +rms = rmse(Im, ndf_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Anisotropic Diffusion 4th Order (2D)____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of Diff4th regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : Diff4th, \ + 'input' : u0,\ + 'regularisation_parameter':3.5, \ + 'edge_parameter':0.02,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.0015 + } + +print ("#############Diff4th CPU################") +start_time = timeit.default_timer() +diff4_cpu = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') + +rms = rmse(Im, diff4_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Nonlocal patches pre-calculation____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +start_time = timeit.default_timer() +# set parameters +pars = {'algorithm' : PatchSelect, \ + 'input' : u0,\ + 'searchwindow': 7, \ + 'patchwindow': 2,\ + 'neighbours' : 15 ,\ + 'edge_parameter':0.18} + +H_i, H_j, Weights = PatchSelect(pars['input'], + pars['searchwindow'], + pars['patchwindow'], + pars['neighbours'], + pars['edge_parameter'],'cpu') + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +""" +plt.figure() +plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1) +plt.show() +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Nonlocal Total Variation penalty____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +## plot +fig = plt.figure() +plt.suptitle('Performance of NLTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +pars2 = {'algorithm' : NLTV, \ + 'input' : u0,\ + 'H_i': H_i, \ + 'H_j': H_j,\ + 'H_k' : 0,\ + 'Weights' : Weights,\ + 'regularisation_parameter': 0.04,\ + 'iterations': 3 + } +start_time = timeit.default_timer() +nltv_cpu = NLTV(pars2['input'], + pars2['H_i'], + pars2['H_j'], + pars2['H_k'], + pars2['Weights'], + pars2['regularisation_parameter'], + pars2['iterations']) + +rms = rmse(Im, nltv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(nltv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_____________FGP-dTV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-dTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dtv_cpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + +rms = rmse(Im, fgp_dtv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("__________Total nuclear Variation__________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TNV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +channelsNo = 5 +noisyVol = np.zeros((channelsNo,N,M),dtype='float32') +idealVol = np.zeros((channelsNo,N,M),dtype='float32') + +for i in range (channelsNo): + noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + idealVol[i,:,:] = Im + +# set parameters +pars = {'algorithm' : TNV, \ + 'input' : noisyVol,\ + 'regularisation_parameter': 0.04, \ + 'number_of_iterations' : 200 ,\ + 'tolerance_constant':1e-05 + } + +print ("#############TNV CPU#################") +start_time = timeit.default_timer() +tnv_cpu = TNV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant']) + +rms = rmse(idealVol, tnv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray") +plt.title('{}'.format('CPU results')) diff --git a/demos/demo_cpu_regularisers3D.py b/demos/demo_cpu_regularisers3D.py new file mode 100644 index 0000000..56baf13 --- /dev/null +++ b/demos/demo_cpu_regularisers3D.py @@ -0,0 +1,458 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of 3D CPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### +#%% +filename = os.path.join( "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) +(N,M) = np.shape(u0) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') + +# change dims to check that modules work with non-squared images +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" +slices = 15 + +noisyVol = np.zeros((slices,N,M),dtype='float32') +noisyRef = np.zeros((slices,N,M),dtype='float32') +idealVol = np.zeros((slices,N,M),dtype='float32') + +for i in range (slices): + noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) + idealVol[i,:,:] = Im + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of ROF-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy 15th slice of a volume') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 500,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(idealVol, rof_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using ROF-TV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu3D = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(idealVol, fgp_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using FGP-TV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________SB-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of SB-TV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : SB_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :150 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'printingOut': 0 + } + +print ("#############SB TV CPU####################") +start_time = timeit.default_timer() +sb_cpu3D = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'cpu') + +rms = rmse(idealVol, sb_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using SB-TV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________LLT-ROF (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of LLT-ROF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : LLT_ROF, \ + 'input' : noisyVol,\ + 'regularisation_parameterROF':0.04, \ + 'regularisation_parameterLLT':0.015, \ + 'number_of_iterations' :300 ,\ + 'time_marching_parameter' :0.0025 ,\ + } + +print ("#############LLT ROF CPU####################") +start_time = timeit.default_timer() +lltrof_cpu3D = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') + +rms = rmse(idealVol, lltrof_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using LLT-ROF')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :250 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_cpu3D = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'cpu') + + +rms = rmse(idealVol, tgv_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using TGV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("________________NDF (3D)___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of NDF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy volume') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.025, \ + 'edge_parameter':0.015,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF CPU################") +start_time = timeit.default_timer() +ndf_cpu3D = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(idealVol, ndf_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using NDF iterations')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Anisotropic Diffusion 4th Order (2D)____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of Diff4th regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy volume') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : Diff4th, \ + 'input' : noisyVol,\ + 'regularisation_parameter':3.5, \ + 'edge_parameter':0.02,\ + 'number_of_iterations' :300 ,\ + 'time_marching_parameter':0.0015 + } + +print ("#############Diff4th CPU################") +start_time = timeit.default_timer() +diff4th_cpu3D = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter']) + +rms = rmse(idealVol, diff4th_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4th_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using DIFF4th iterations')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-dTV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-dTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV,\ + 'input' : noisyVol,\ + 'refdata' : noisyRef,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dTV_cpu3D = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(idealVol, fgp_dTV_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV')) +#%% diff --git a/demos/demo_cpu_vs_gpu_regularisers.py b/demos/demo_cpu_vs_gpu_regularisers.py new file mode 100644 index 0000000..5ce8da4 --- /dev/null +++ b/demos/demo_cpu_vs_gpu_regularisers.py @@ -0,0 +1,790 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of CPU implementation against the GPU one + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import PatchSelect +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +filename = os.path.join("data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) + +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________ROF-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of ROF-TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 4500,\ + 'time_marching_parameter': 0.00002 + } +print ("#############ROF TV CPU####################") +start_time = timeit.default_timer() +rof_cpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') +rms = rmse(Im, rof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("##############ROF TV GPU##################") +start_time = timeit.default_timer() +rof_gpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, rof_gpu) +pars['rmse'] = rms +pars['algorithm'] = ROF_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(rof_cpu)) +diff_im = abs(rof_cpu - rof_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of FGP-TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV CPU####################") +start_time = timeit.default_timer() +fgp_cpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############FGP TV GPU##################") +start_time = timeit.default_timer() +fgp_gpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(fgp_cpu)) +diff_im = abs(fgp_cpu - fgp_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________SB-TV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of SB-TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : SB_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :150 ,\ + 'tolerance_constant':1e-05,\ + 'methodTV': 0 ,\ + 'printingOut': 0 + } + +print ("#############SB-TV CPU####################") +start_time = timeit.default_timer() +sb_cpu = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, sb_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############SB TV GPU##################") +start_time = timeit.default_timer() +sb_gpu = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'gpu') + +rms = rmse(Im, sb_gpu) +pars['rmse'] = rms +pars['algorithm'] = SB_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(sb_cpu)) +diff_im = abs(sb_cpu - sb_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________TGV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of TGV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :400 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_cpu = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'cpu') + +rms = rmse(Im, tgv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("##############TGV GPU##################") +start_time = timeit.default_timer() +tgv_gpu = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'gpu') + +rms = rmse(Im, tgv_gpu) +pars['rmse'] = rms +pars['algorithm'] = TGV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(tgv_gpu)) +diff_im = abs(tgv_cpu - tgv_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________LLT-ROF bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of LLT-ROF regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : LLT_ROF, \ + 'input' : u0,\ + 'regularisation_parameterROF':0.04, \ + 'regularisation_parameterLLT':0.01, \ + 'number_of_iterations' :4500 ,\ + 'time_marching_parameter' :0.00002 ,\ + } + +print ("#############LLT- ROF CPU####################") +start_time = timeit.default_timer() +lltrof_cpu = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') + +rms = rmse(Im, lltrof_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("#############LLT- ROF GPU####################") +start_time = timeit.default_timer() +lltrof_gpu = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, lltrof_gpu) +pars['rmse'] = rms +pars['algorithm'] = LLT_ROF +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(lltrof_gpu)) +diff_im = abs(lltrof_cpu - lltrof_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________NDF bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF CPU####################") +start_time = timeit.default_timer() +ndf_cpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'cpu') + +rms = rmse(Im, ndf_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############NDF GPU##################") +start_time = timeit.default_timer() +ndf_gpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(Im, ndf_gpu) +pars['rmse'] = rms +pars['algorithm'] = NDF +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(ndf_cpu)) +diff_im = abs(ndf_cpu - ndf_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Anisotropic Diffusion 4th Order (2D)____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of Diff4th regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : Diff4th, \ + 'input' : u0,\ + 'regularisation_parameter':3.5, \ + 'edge_parameter':0.02,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.001 + } + +print ("#############Diff4th CPU####################") +start_time = timeit.default_timer() +diff4th_cpu = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'cpu') + +rms = rmse(Im, diff4th_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4th_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("##############Diff4th GPU##################") +start_time = timeit.default_timer() +diff4th_gpu = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], 'gpu') + +rms = rmse(Im, diff4th_gpu) +pars['rmse'] = rms +pars['algorithm'] = Diff4th +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4th_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(diff4th_cpu)) +diff_im = abs(diff4th_cpu - diff4th_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1000 ,\ + 'tolerance_constant':1e-07,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dtv_cpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_dtv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("##############FGP dTV GPU##################") +start_time = timeit.default_timer() +fgp_dtv_gpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') +rms = rmse(Im, fgp_dtv_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_dTV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(fgp_dtv_cpu)) +diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____Non-local regularisation bench_________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Comparison of Nonlocal TV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +pars = {'algorithm' : PatchSelect, \ + 'input' : u0,\ + 'searchwindow': 7, \ + 'patchwindow': 2,\ + 'neighbours' : 15 ,\ + 'edge_parameter':0.18} + +print ("############## Nonlocal Patches on CPU##################") +start_time = timeit.default_timer() +H_i, H_j, WeightsCPU = PatchSelect(pars['input'], + pars['searchwindow'], + pars['patchwindow'], + pars['neighbours'], + pars['edge_parameter'],'cpu') +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) + +print ("############## Nonlocal Patches on GPU##################") +start_time = timeit.default_timer() +start_time = timeit.default_timer() +H_i, H_j, WeightsGPU = PatchSelect(pars['input'], + pars['searchwindow'], + pars['patchwindow'], + pars['neighbours'], + pars['edge_parameter'],'gpu') +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(u0)) +diff_im = abs(WeightsCPU[0,:,:] - WeightsGPU[0,:,:]) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,2,2) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") +#%% \ No newline at end of file diff --git a/demos/demo_gpu_regularisers.py b/demos/demo_gpu_regularisers.py new file mode 100644 index 0000000..bc9baf2 --- /dev/null +++ b/demos/demo_gpu_regularisers.py @@ -0,0 +1,518 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of GPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th +from ccpi.filters.regularisers import PatchSelect, NLTV +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### +#%% +filename = os.path.join( "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) +(N,M) = np.shape(u0) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" +#%% + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________ROF-TV regulariser_____________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of the ROF-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 1200,\ + 'time_marching_parameter': 0.0025 + } +print ("##############ROF TV GPU##################") +start_time = timeit.default_timer() +rof_gpu = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, rof_gpu) +pars['rmse'] = rms +pars['algorithm'] = ROF_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-TV regulariser_____________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of the FGP-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':1e-06,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("##############FGP TV GPU##################") +start_time = timeit.default_timer() +fgp_gpu = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________SB-TV regulariser______________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of the SB-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : SB_TV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :150 ,\ + 'tolerance_constant':1e-06,\ + 'methodTV': 0 ,\ + 'printingOut': 0 + } + +print ("##############SB TV GPU##################") +start_time = timeit.default_timer() +sb_gpu = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'gpu') + +rms = rmse(Im, sb_gpu) +pars['rmse'] = rms +pars['algorithm'] = SB_TV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) +#%% + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_____Total Generalised Variation (2D)______") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : u0,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :1250 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV CPU####################") +start_time = timeit.default_timer() +tgv_gpu = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'gpu') + + +rms = rmse(Im, tgv_gpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("______________LLT- ROF (2D)________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of LLT-ROF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : LLT_ROF, \ + 'input' : u0,\ + 'regularisation_parameterROF':0.04, \ + 'regularisation_parameterLLT':0.01, \ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter' :0.0025 ,\ + } + +print ("#############LLT- ROF GPU####################") +start_time = timeit.default_timer() +lltrof_gpu = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + + +rms = rmse(Im, lltrof_gpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________NDF regulariser_____________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of the NDF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.025, \ + 'edge_parameter':0.015,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("##############NDF GPU##################") +start_time = timeit.default_timer() +ndf_gpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(Im, ndf_gpu) +pars['rmse'] = rms +pars['algorithm'] = NDF +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Anisotropic Diffusion 4th Order (2D)____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of Diff4th regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : Diff4th, \ + 'input' : u0,\ + 'regularisation_parameter':3.5, \ + 'edge_parameter':0.02,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.0015 + } + +print ("#############DIFF4th CPU################") +start_time = timeit.default_timer() +diff4_gpu = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(Im, diff4_gpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Nonlocal patches pre-calculation____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +start_time = timeit.default_timer() +# set parameters +pars = {'algorithm' : PatchSelect, \ + 'input' : u0,\ + 'searchwindow': 7, \ + 'patchwindow': 2,\ + 'neighbours' : 15 ,\ + 'edge_parameter':0.18} + +H_i, H_j, Weights = PatchSelect(pars['input'], + pars['searchwindow'], + pars['patchwindow'], + pars['neighbours'], + pars['edge_parameter'],'gpu') + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +""" +plt.figure() +plt.imshow(Weights[0,:,:],cmap="gray",interpolation="nearest",vmin=0, vmax=1) +plt.show() +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Nonlocal Total Variation penalty____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +## plot +fig = plt.figure() +plt.suptitle('Performance of NLTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +pars2 = {'algorithm' : NLTV, \ + 'input' : u0,\ + 'H_i': H_i, \ + 'H_j': H_j,\ + 'H_k' : 0,\ + 'Weights' : Weights,\ + 'regularisation_parameter': 0.02,\ + 'iterations': 3 + } +start_time = timeit.default_timer() +nltv_cpu = NLTV(pars2['input'], + pars2['H_i'], + pars2['H_j'], + pars2['H_k'], + pars2['Weights'], + pars2['regularisation_parameter'], + pars2['iterations']) + +rms = rmse(Im, nltv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(nltv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of the FGP-dTV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("##############FGP dTV GPU##################") +start_time = timeit.default_timer() +fgp_dtv_gpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_dtv_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_dTV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) diff --git a/demos/demo_gpu_regularisers3D.py b/demos/demo_gpu_regularisers3D.py new file mode 100644 index 0000000..2f49cb9 --- /dev/null +++ b/demos/demo_gpu_regularisers3D.py @@ -0,0 +1,460 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Feb 22 11:39:43 2018 + +Demonstration of GPU regularisers + +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, TGV, LLT_ROF, FGP_dTV, NDF, Diff4th +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### +#%% +filename = os.path.join( "data" ,"lena_gray_512.tif") + +# read image +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 +u0 = Im + np.random.normal(loc = 0 , + scale = perc * Im , + size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) +(N,M) = np.shape(u0) +# map the u0 u0->u0>0 +# f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" + + +slices = 20 + +filename = os.path.join( "data" ,"lena_gray_512.tif") +Im = plt.imread(filename) +Im = np.asarray(Im, dtype='float32') + +Im = Im/255 +perc = 0.05 + +noisyVol = np.zeros((slices,N,N),dtype='float32') +noisyRef = np.zeros((slices,N,N),dtype='float32') +idealVol = np.zeros((slices,N,N),dtype='float32') + +for i in range (slices): + noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) + idealVol[i,:,:] = Im + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________ROF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of ROF-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy 15th slice of a volume') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm': ROF_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04,\ + 'number_of_iterations': 500,\ + 'time_marching_parameter': 0.0025 + } +print ("#############ROF TV GPU####################") +start_time = timeit.default_timer() +rof_gpu3D = ROF_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') +rms = rmse(idealVol, rof_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(rof_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using ROF-TV')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-TV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV GPU####################") +start_time = timeit.default_timer() +fgp_gpu3D = FGP_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(idealVol, fgp_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using FGP-TV')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________SB-TV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of SB-TV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : SB_TV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :100 ,\ + 'tolerance_constant':1e-05,\ + 'methodTV': 0 ,\ + 'printingOut': 0 + } + +print ("#############SB TV GPU####################") +start_time = timeit.default_timer() +sb_gpu3D = SB_TV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['printingOut'],'gpu') + +rms = rmse(idealVol, sb_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using SB-TV')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________LLT-ROF (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of LLT-ROF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : LLT_ROF, \ + 'input' : noisyVol,\ + 'regularisation_parameterROF':0.04, \ + 'regularisation_parameterLLT':0.015, \ + 'number_of_iterations' :300 ,\ + 'time_marching_parameter' :0.0025 ,\ + } + +print ("#############LLT ROF CPU####################") +start_time = timeit.default_timer() +lltrof_gpu3D = LLT_ROF(pars['input'], + pars['regularisation_parameterROF'], + pars['regularisation_parameterLLT'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(idealVol, lltrof_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(lltrof_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using LLT-ROF')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________TGV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of TGV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : TGV, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.04, \ + 'alpha1':1.0,\ + 'alpha0':2.0,\ + 'number_of_iterations' :600 ,\ + 'LipshitzConstant' :12 ,\ + } + +print ("#############TGV GPU####################") +start_time = timeit.default_timer() +tgv_gpu3D = TGV(pars['input'], + pars['regularisation_parameter'], + pars['alpha1'], + pars['alpha0'], + pars['number_of_iterations'], + pars['LipshitzConstant'],'gpu') + + +rms = rmse(idealVol, tgv_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tgv_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using TGV')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________NDF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of NDF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.025, \ + 'edge_parameter':0.015,\ + 'number_of_iterations' :500 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF GPU####################") +start_time = timeit.default_timer() +ndf_gpu3D = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(idealVol, ndf_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using NDF')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Anisotropic Diffusion 4th Order (3D)____") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of DIFF4th regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : Diff4th, \ + 'input' : noisyVol,\ + 'regularisation_parameter':3.5, \ + 'edge_parameter':0.02,\ + 'number_of_iterations' :300 ,\ + 'time_marching_parameter':0.0015 + } + +print ("#############DIFF4th CPU################") +start_time = timeit.default_timer() +diff4_gpu3D = Diff4th(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'],'gpu') + +rms = rmse(idealVol, diff4_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(diff4_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('GPU results')) + +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-dTV (3D)________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure() +plt.suptitle('Performance of FGP-dTV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : noisyVol,\ + 'refdata' : noisyRef,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV GPU####################") +start_time = timeit.default_timer() +fgp_dTV_gpu3D = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(idealVol, fgp_dTV_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV')) +#%% diff --git a/demos/images/TV_vs_NLTV.jpg b/demos/images/TV_vs_NLTV.jpg new file mode 100644 index 0000000..e976512 Binary files /dev/null and b/demos/images/TV_vs_NLTV.jpg differ diff --git a/demos/images/probl.pdf b/demos/images/probl.pdf new file mode 100644 index 0000000..6a06021 Binary files /dev/null and b/demos/images/probl.pdf differ diff --git a/demos/images/probl.png b/demos/images/probl.png new file mode 100644 index 0000000..af0e852 Binary files /dev/null and b/demos/images/probl.png differ diff --git a/demos/images/reg_penalties.jpg b/demos/images/reg_penalties.jpg new file mode 100644 index 0000000..923d5c4 Binary files /dev/null and b/demos/images/reg_penalties.jpg differ diff --git a/demos/qualitymetrics.py b/demos/qualitymetrics.py new file mode 100644 index 0000000..850829e --- /dev/null +++ b/demos/qualitymetrics.py @@ -0,0 +1,18 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Feb 21 13:34:32 2018 +# quality metrics +@authors: Daniil Kazantsev, Edoardo Pasca +""" +import numpy as np + +def nrmse(im1, im2): + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) + +def rmse(im1, im2): + rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size)) + return rmse -- cgit v1.2.3 From 68e6f3397e8a450854f39a5d514e1f747b9031a4 Mon Sep 17 00:00:00 2001 From: Tomas Kulhanek Date: Thu, 28 Feb 2019 15:22:10 +0000 Subject: merge --- demos/SoftwareX_supp/Demo_RealData_Recon_SX.py | 231 +++++++++++++++ .../SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py | 161 +++++++++++ demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py | 309 +++++++++++++++++++++ demos/SoftwareX_supp/Demo_SimulData_SX.py | 117 ++++++++ demos/SoftwareX_supp/Readme.md | 26 ++ .../optim_param/Optim_admm_rofllt.h5 | Bin 0 -> 2408 bytes .../SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 | Bin 0 -> 2408 bytes demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 | Bin 0 -> 2408 bytes 8 files changed, 844 insertions(+) create mode 100644 demos/SoftwareX_supp/Demo_RealData_Recon_SX.py create mode 100644 demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py create mode 100644 demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py create mode 100644 demos/SoftwareX_supp/Demo_SimulData_SX.py create mode 100644 demos/SoftwareX_supp/Readme.md create mode 100644 demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 create mode 100644 demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 create mode 100644 demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 (limited to 'demos') diff --git a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py new file mode 100644 index 0000000..01491d9 --- /dev/null +++ b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py @@ -0,0 +1,231 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads real tomographic data (stored at Zenodo) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstructs using TomoRec software +* Saves reconstructed images +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec +3. libtiff if one needs to save tiff images: + install pip install libtiff + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +import numpy as np +import matplotlib.pyplot as plt +import h5py +from tomorec.supp.suppTools import normaliser +import time + +# load dendritic projection data +h5f = h5py.File('data/DendrData_3D.h5','r') +dataRaw = h5f['dataRaw'][:] +flats = h5f['flats'][:] +darks = h5f['darks'][:] +angles_rad = h5f['angles_rad'][:] +h5f.close() +#%% +# normalise the data [detectorsVert, Projections, detectorsHoriz] +data_norm = normaliser(dataRaw, flats, darks, log='log') +del dataRaw, darks, flats + +intens_max = 2.3 +plt.figure() +plt.subplot(131) +plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(data_norm[300,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(data_norm[:,:,600],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() + +detectorHoriz = np.size(data_norm,2) +det_y_crop = [i for i in range(0,detectorHoriz-22)] +N_size = 950 # reconstruction domain +time_label = int(time.time()) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%Reconstructing with FBP method %%%%%%%%%%%%%%%%%") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +from tomorec.methodsDIR import RecToolsDIR + +RectoolsDIR = RecToolsDIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device='gpu') + +FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop]) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(FBPrec[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(FBPrec[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('FBP Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +FBPrec += np.abs(np.min(FBPrec)) +multiplier = (int)(65535/(np.max(FBPrec))) + +# saving to tiffs (16bit) +for i in range(0,np.size(FBPrec,0)): + tiff = TIFF.open('Dendr_FBP'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(FBPrec[i,:,:]*multiplier)) + tiff.close() +""" +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = angles_rad, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = 0.00085,\ + regularisation_iterations = 50) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_sbtv[:,:,sliceSel],vmin=0, vmax=max_val, cmap="gray") +plt.title('3D ADMM-SB-TV Reconstruction, sagittal view') +plt.show() + + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_sbtv))) +for i in range(0,np.size(RecADMM_reg_sbtv,0)): + tiff = TIFF.open('Dendr_ADMM_SBTV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_sbtv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_SBTV'+str(time_label)+'.npy', RecADMM_reg_sbtv) +del RecADMM_reg_sbtv +#%% +print ("Reconstructing with ADMM method using ROF-LLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = 0.0009,\ + regularisation_parameter2 = 0.0007,\ + time_marching_parameter = 0.001,\ + regularisation_iterations = 550) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_rofllt[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-ROFLLT Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_rofllt))) +for i in range(0,np.size(RecADMM_reg_rofllt,0)): + tiff = TIFF.open('Dendr_ADMM_ROFLLT'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_rofllt[i,:,:]*multiplier)) + tiff.close() +""" + +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_ROFLLT'+str(time_label)+'.npy', RecADMM_reg_rofllt) +del RecADMM_reg_rofllt +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop], + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = 0.01,\ + regularisation_iterations = 500) + +sliceSel = 50 +max_val = 0.003 +plt.figure() +plt.subplot(131) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, axial view') + +plt.subplot(132) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, coronal view') + +plt.subplot(133) +plt.imshow(RecADMM_reg_tgv[:,:,sliceSel],vmin=0, vmax=max_val) +plt.title('3D ADMM-TGV Reconstruction, sagittal view') +plt.show() + +# saving to tiffs (16bit) +""" +from libtiff import TIFF +multiplier = (int)(65535/(np.max(RecADMM_reg_tgv))) +for i in range(0,np.size(RecADMM_reg_tgv,0)): + tiff = TIFF.open('Dendr_ADMM_TGV'+'_'+str(i)+'.tiff', mode='w') + tiff.write_image(np.uint16(RecADMM_reg_tgv[i,:,:]*multiplier)) + tiff.close() +""" +# Saving recpnstructed data with a unique time label +np.save('Dendr_ADMM_TGV'+str(time_label)+'.npy', RecADMM_reg_tgv) +del RecADMM_reg_tgv +#%% \ No newline at end of file diff --git a/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py b/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py new file mode 100644 index 0000000..59ffc0e --- /dev/null +++ b/demos/SoftwareX_supp/Demo_SimulData_ParOptimis_SX.py @@ -0,0 +1,161 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previosly generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Optimises for the regularisation parameters which later used in the script: +Demo_SimulData_Recon_SX.py +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +sliceSel = 128 +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +intens_max = 240 +plt.figure() +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +param_space = 30 +reg_param_sb_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_sbtv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using SB-TV penalty") +for i in range(0,param_space): + RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'SB_TV', \ + regularisation_parameter = reg_param_sb_vec[i],\ + regularisation_iterations = 50) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_sbtv) + erros_vec_sbtv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-SB-TV is {}".format(reg_param_sb_vec[i],erros_vec_sbtv[i])) + +plt.figure() +plt.plot(erros_vec_sbtv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_sbtv.h5', 'w') +h5f.create_dataset('reg_param_sb_vec', data=reg_param_sb_vec) +h5f.create_dataset('erros_vec_sbtv', data=erros_vec_sbtv) +h5f.close() +#%% +param_space = 30 +reg_param_rofllt_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_rofllt = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using ROF-LLT penalty") +for i in range(0,param_space): + RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = reg_param_rofllt_vec[i],\ + regularisation_parameter2 = 0.005,\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_rofllt) + erros_vec_rofllt[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-ROF-LLT is {}".format(reg_param_rofllt_vec[i],erros_vec_rofllt[i])) + +plt.figure() +plt.plot(erros_vec_rofllt) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_rofllt.h5', 'w') +h5f.create_dataset('reg_param_rofllt_vec', data=reg_param_rofllt_vec) +h5f.create_dataset('erros_vec_rofllt', data=erros_vec_rofllt) +h5f.close() +#%% +param_space = 30 +reg_param_tgv_vec = np.linspace(0.03,0.15,param_space,dtype='float32') # a vector of parameters +erros_vec_tgv = np.zeros((param_space)) # a vector of errors + +print ("Reconstructing with ADMM method using TGV penalty") +for i in range(0,param_space): + RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 15, \ + regularisation = 'TGV', \ + regularisation_parameter = reg_param_tgv_vec[i],\ + regularisation_iterations = 600) + # calculate errors + Qtools = QualityTools(phantom, RecADMM_reg_tgv) + erros_vec_tgv[i] = Qtools.rmse() + print("RMSE for regularisation parameter {} for ADMM-TGV is {}".format(reg_param_tgv_vec[i],erros_vec_tgv[i])) + +plt.figure() +plt.plot(erros_vec_tgv) + +# Saving generated data with a unique time label +h5f = h5py.File('Optim_admm_tgv.h5', 'w') +h5f.create_dataset('reg_param_tgv_vec', data=reg_param_tgv_vec) +h5f.create_dataset('erros_vec_tgv', data=erros_vec_tgv) +h5f.close() +#%% \ No newline at end of file diff --git a/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py b/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py new file mode 100644 index 0000000..93b0cef --- /dev/null +++ b/demos/SoftwareX_supp/Demo_SimulData_Recon_SX.py @@ -0,0 +1,309 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Reads data which is previously generated by TomoPhantom software (Zenodo link) +--- https://doi.org/10.5281/zenodo.2578893 +* Reconstruct using optimised regularisation parameters (see Demo_SimulData_ParOptimis_SX.py) +____________________________________________________________________________ +>>>>> Dependencies: <<<<< +1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox +2. TomoRec: conda install -c dkazanc tomorec +or install from https://github.com/dkazanc/TomoRec + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +GPLv3 license (ASTRA toolbox) +""" +#import timeit +import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec +import numpy as np +import h5py +from ccpi.supp.qualitymetrics import QualityTools +from scipy.signal import gaussian + +# loading the data +h5f = h5py.File('data/TomoSim_data1550671417.h5','r') +phantom = h5f['phantom'][:] +projdata_norm = h5f['projdata_norm'][:] +proj_angles = h5f['proj_angles'][:] +h5f.close() + +[Vert_det, AnglesNum, Horiz_det] = np.shape(projdata_norm) +N_size = Vert_det + +# loading optmisation parameters (the result of running Demo_SimulData_ParOptimis_SX) +h5f = h5py.File('optim_param/Optim_admm_sbtv.h5','r') +reg_param_sb_vec = h5f['reg_param_sb_vec'][:] +erros_vec_sbtv = h5f['erros_vec_sbtv'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_rofllt.h5','r') +reg_param_rofllt_vec = h5f['reg_param_rofllt_vec'][:] +erros_vec_rofllt = h5f['erros_vec_rofllt'][:] +h5f.close() + +h5f = h5py.File('optim_param/Optim_admm_tgv.h5','r') +reg_param_tgv_vec = h5f['reg_param_tgv_vec'][:] +erros_vec_tgv = h5f['erros_vec_tgv'][:] +h5f.close() + +index_minSBTV = min(xrange(len(erros_vec_sbtv)), key=erros_vec_sbtv.__getitem__) +index_minROFLLT = min(xrange(len(erros_vec_rofllt)), key=erros_vec_rofllt.__getitem__) +index_minTGV = min(xrange(len(erros_vec_tgv)), key=erros_vec_tgv.__getitem__) +# assign optimal regularisation parameters: +optimReg_sbtv = reg_param_sb_vec[index_minSBTV] +optimReg_rofllt = reg_param_rofllt_vec[index_minROFLLT] +optimReg_tgv = reg_param_tgv_vec[index_minTGV] +#%% +# plot loaded data +sliceSel = 128 +#plt.figure() +fig, (ax1, ax2) = plt.subplots(figsize=(15, 5), ncols=2) +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(121) +one = plt.imshow(phantom[sliceSel,:,:],vmin=0, vmax=1, interpolation='none', cmap="PuOr") +fig.colorbar(one, ax=ax1) +plt.title('3D Phantom, axial (X-Y) view') +plt.subplot(122) +two = plt.imshow(phantom[:,sliceSel,:],vmin=0, vmax=1,interpolation='none', cmap="PuOr") +fig.colorbar(two, ax=ax2) +plt.title('3D Phantom, coronal (Y-Z) view') +""" +plt.subplot(133) +plt.imshow(phantom[:,:,sliceSel],vmin=0, vmax=1, cmap="PuOr") +plt.title('3D Phantom, sagittal view') + +""" +plt.show() +#%% +intens_max = 220 +plt.figure() +plt.rcParams.update({'xtick.labelsize': 'x-small'}) +plt.rcParams.update({'ytick.labelsize':'x-small'}) +plt.subplot(131) +plt.imshow(projdata_norm[:,sliceSel,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('2D Projection (X-Z) view', fontsize=19) +plt.subplot(132) +plt.imshow(projdata_norm[sliceSel,:,:],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('X-detector', fontsize=16) +plt.ylabel('Projection angle', fontsize=16) +plt.title('Sinogram (X-Y) view', fontsize=19) +plt.subplot(133) +plt.imshow(projdata_norm[:,:,sliceSel],vmin=0, vmax=intens_max, cmap="PuOr") +plt.xlabel('Projection angle', fontsize=16) +plt.ylabel('Z-detector', fontsize=16) +plt.title('Vertical (Y-Z) view', fontsize=19) +plt.show() +#plt.savefig('projdata.pdf', format='pdf', dpi=1200) +#%% +# initialise TomoRec DIRECT reconstruction class ONCE +from tomorec.methodsDIR import RecToolsDIR +RectoolsDIR = RecToolsDIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + device = 'gpu') +#%% +print ("Reconstruction using FBP from TomoRec") +recFBP= RectoolsDIR.FBP(projdata_norm) # FBP reconstruction +#%% +x0, y0 = 0, 127 # These are in _pixel_ coordinates!! +x1, y1 = 255, 127 + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,5)) +gs1 = gridspec.GridSpec(1, 3) +gs1.update(wspace=0.1, hspace=0.05) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.imshow(recFBP[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax1.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.colorbar(ax=ax1) +plt.title('FBP Reconstruction, axial (X-Y) view', fontsize=19) +ax1.set_aspect('equal') +ax3 = plt.subplot(gs1[1]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(recFBP[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax2 = plt.subplot(gs1[2]) +plt.imshow(recFBP[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('FBP Reconstruction, coronal (Y-Z) view', fontsize=19) +ax2.set_aspect('equal') +plt.show() +#plt.savefig('FBP_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, recFBP) +RMSE_fbp = Qtools.rmse() +print("Root Mean Square Error for FBP is {}".format(RMSE_fbp)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, recFBP[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_fbp = Qtools.ssim(win2d) +print("Mean SSIM for FBP is {}".format(ssim_fbp[0])) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Reconstructing with ADMM method using TomoRec software") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +# initialise TomoRec ITERATIVE reconstruction class ONCE +from tomorec.methodsIR import RecToolsIR +RectoolsIR = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) + DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only + AnglesVec = proj_angles, # array of angles in radians + ObjSize = N_size, # a scalar to define reconstructed object dimensions + datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) + nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE') + OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets + tolerance = 1e-08, # tolerance to stop outer iterations earlier + device='gpu') +#%% +print ("Reconstructing with ADMM method using SB-TV penalty") +RecADMM_reg_sbtv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'SB_TV', \ + regularisation_parameter = optimReg_sbtv,\ + regularisation_iterations = 50) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_sb_vec, erros_vec_sbtv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-SBTV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_sbtv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_sbtv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-SBTV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +plt.savefig('SBTV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_sbtv) +RMSE_admm_sbtv = Qtools.rmse() +print("Root Mean Square Error for ADMM-SB-TV is {}".format(RMSE_admm_sbtv)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_sbtv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_sbtv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-SBTV is {}".format(ssim_admm_sbtv[0])) +#%% +print ("Reconstructing with ADMM method using ROFLLT penalty") +RecADMM_reg_rofllt = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'LLT_ROF', \ + regularisation_parameter = optimReg_rofllt,\ + regularisation_parameter2 = 0.0085,\ + regularisation_iterations = 600) + +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_rofllt_vec, erros_vec_rofllt, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-ROFLLT (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_rofllt[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_rofllt[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-ROFLLT (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('ROFLLT_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_rofllt) +RMSE_admm_rofllt = Qtools.rmse() +print("Root Mean Square Error for ADMM-ROF-LLT is {}".format(RMSE_admm_rofllt)) + +# SSIM measure +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_rofllt[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_rifllt = Qtools.ssim(win2d) +print("Mean SSIM ADMM-ROFLLT is {}".format(ssim_admm_rifllt[0])) +#%% +print ("Reconstructing with ADMM method using TGV penalty") +RecADMM_reg_tgv = RectoolsIR.ADMM(projdata_norm, + rho_const = 2000.0, \ + iterationsADMM = 25, \ + regularisation = 'TGV', \ + regularisation_parameter = optimReg_tgv,\ + regularisation_iterations = 600) +#%% +sliceSel = int(0.5*N_size) +max_val = 1 +plt.figure(figsize = (20,3)) +gs1 = gridspec.GridSpec(1, 4) +gs1.update(wspace=0.02, hspace=0.01) # set the spacing between axes. +ax1 = plt.subplot(gs1[0]) +plt.plot(reg_param_tgv_vec, erros_vec_tgv, color='k',linewidth=2) +plt.xlabel('Regularisation parameter', fontsize=16) +plt.ylabel('RMSE value', fontsize=16) +plt.title('Regularisation selection', fontsize=19) +ax2 = plt.subplot(gs1[1]) +plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="PuOr") +ax2.plot([x0, x1], [y0, y1], 'ko-', linestyle='--') +plt.title('ADMM-TGV (X-Y) view', fontsize=19) +#ax2.set_aspect('equal') +ax3 = plt.subplot(gs1[2]) +plt.plot(phantom[sliceSel,sliceSel,0:N_size],color='k',linewidth=2) +plt.plot(RecADMM_reg_tgv[sliceSel,sliceSel,0:N_size],linestyle='--',color='g') +plt.title('Profile', fontsize=19) +ax4 = plt.subplot(gs1[3]) +plt.imshow(RecADMM_reg_tgv[:,sliceSel,:],vmin=0, vmax=max_val, cmap="PuOr") +plt.title('ADMM-TGV (Y-Z) view', fontsize=19) +plt.colorbar(ax=ax4) +plt.show() +#plt.savefig('TGV_phantom.pdf', format='pdf', dpi=1600) + +# calculate errors +Qtools = QualityTools(phantom, RecADMM_reg_tgv) +RMSE_admm_tgv = Qtools.rmse() +print("Root Mean Square Error for ADMM-TGV is {}".format(RMSE_admm_tgv)) + +# SSIM measure +#Create a 2d gaussian for the window parameter +Qtools = QualityTools(phantom[128,:,:]*255, RecADMM_reg_tgv[128,:,:]*235) +win = np.array([gaussian(11, 1.5)]) +win2d = win * (win.T) +ssim_admm_tgv = Qtools.ssim(win2d) +print("Mean SSIM ADMM-TGV is {}".format(ssim_admm_tgv[0])) +#%% \ No newline at end of file diff --git a/demos/SoftwareX_supp/Demo_SimulData_SX.py b/demos/SoftwareX_supp/Demo_SimulData_SX.py new file mode 100644 index 0000000..cdf4325 --- /dev/null +++ b/demos/SoftwareX_supp/Demo_SimulData_SX.py @@ -0,0 +1,117 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This demo scripts support the following publication: +"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with +proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner, + Philip J. Withers; Software X, 2019 +____________________________________________________________________________ +* Runs TomoPhantom software to simulate tomographic projection data with +some imaging errors and noise +* Saves the data into hdf file to be uploaded in reconstruction scripts +__________________________________________________________________________ + +>>>>> Dependencies: <<<<< +1. TomoPhantom software for phantom and data generation + +@author: Daniil Kazantsev, e:mail daniil.kazantsev@diamond.ac.uk +Apache 2.0 license +""" +import timeit +import os +import matplotlib.pyplot as plt +import numpy as np +import tomophantom +from tomophantom import TomoP3D +from tomophantom.supp.flatsgen import flats +from tomophantom.supp.normraw import normaliser_sim + +print ("Building 3D phantom using TomoPhantom software") +tic=timeit.default_timer() +model = 16 # select a model number from the library +N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) +path = os.path.dirname(tomophantom.__file__) +path_library3D = os.path.join(path, "Phantom3DLibrary.dat") +#This will generate a N_size x N_size x N_size phantom (3D) +phantom_tm = TomoP3D.Model(model, N_size, path_library3D) +toc=timeit.default_timer() +Run_time = toc - tic +print("Phantom has been built in {} seconds".format(Run_time)) + +sliceSel = int(0.5*N_size) +#plt.gray() +plt.figure() +plt.subplot(131) +plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) +plt.title('3D Phantom, axial view') + +plt.subplot(132) +plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) +plt.title('3D Phantom, coronal view') + +plt.subplot(133) +plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) +plt.title('3D Phantom, sagittal view') +plt.show() + +# Projection geometry related parameters: +Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) +Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) +angles_num = int(0.35*np.pi*N_size); # angles number +angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees +angles_rad = angles*(np.pi/180.0) +#%% +print ("Building 3D analytical projection data with TomoPhantom") +projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (analytical)') +plt.subplot(132) +plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +print ("Simulate flat fields, add noise and normalise projections...") +flatsnum = 20 # generate 20 flat fields +flatsSIM = flats(Vert_det, Horiz_det, maxheight = 0.1, maxthickness = 3, sigma_noise = 0.2, sigmasmooth = 3, flatsnum=flatsnum) + +plt.figure() +plt.imshow(flatsSIM[0,:,:],vmin=0, vmax=1) +plt.title('A selected simulated flat-field') +#%% +# Apply normalisation of data and add noise +flux_intensity = 60000 # controls the level of noise +sigma_flats = 0.01 # contro the level of noise in flats (higher creates more ring artifacts) +projData3D_norm = normaliser_sim(projData3D_analyt, flatsSIM, sigma_flats, flux_intensity) + +intens_max = N_size +sliceSel = int(0.5*N_size) +plt.figure() +plt.subplot(131) +plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) +plt.title('2D Projection (erroneous)') +plt.subplot(132) +plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) +plt.title('Sinogram view') +plt.subplot(133) +plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) +plt.title('Tangentogram view') +plt.show() +#%% +import h5py +import time +time_label = int(time.time()) +# Saving generated data with a unique time label +h5f = h5py.File('TomoSim_data'+str(time_label)+'.h5', 'w') +h5f.create_dataset('phantom', data=phantom_tm) +h5f.create_dataset('projdata_norm', data=projData3D_norm) +h5f.create_dataset('proj_angles', data=angles_rad) +h5f.close() +#%% \ No newline at end of file diff --git a/demos/SoftwareX_supp/Readme.md b/demos/SoftwareX_supp/Readme.md new file mode 100644 index 0000000..54e83f1 --- /dev/null +++ b/demos/SoftwareX_supp/Readme.md @@ -0,0 +1,26 @@ + +# SoftwareX publication [1] supporting files + +## Decription: +The scripts here support publication in SoftwareX journal [1] to ensure reproducibility of the research. The scripts linked with data shared at Zenodo. + +## Data: +Data is shared at Zenodo [here](https://doi.org/10.5281/zenodo.2578893) + +## Dependencies: +1. [ASTRA toolbox](https://github.com/astra-toolbox/astra-toolbox): `conda install -c astra-toolbox astra-toolbox` +2. [TomoRec](https://github.com/dkazanc/TomoRec): `conda install -c dkazanc tomorec` +3. [Tomophantom](https://github.com/dkazanc/TomoPhantom): `conda install tomophantom -c ccpi` + +## Files description: +- `Demo_SimulData_SX.py` - simulates 3D projection data using [Tomophantom](https://github.com/dkazanc/TomoPhantom) software. One can skip this module if the data is taken from [Zenodo](https://doi.org/10.5281/zenodo.2578893) +- `Demo_SimulData_ParOptimis_SX.py` - runs computationally extensive calculations for optimal regularisation parameters, the result are saved into directory `optim_param`. This script can be also skipped. +- `Demo_SimulData_Recon_SX.py` - using established regularisation parameters, one runs iterative reconstruction +- `Demo_RealData_Recon_SX.py` - runs real data reconstructions. Can be quite intense on memory so reduce the size of the reconstructed volume if needed. + +### References: +[1] "CCPi-Regularisation Toolkit for computed tomographic image reconstruction with proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner and Philip J. Withers; SoftwareX, 2019. + +### Acknowledgments: +CCPi-RGL software is a product of the [CCPi](https://www.ccpi.ac.uk/) group, STFC SCD software developers and Diamond Light Source (DLS). Any relevant questions/comments can be e-mailed to Daniil Kazantsev at dkazanc@hotmail.com + diff --git a/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 b/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 new file mode 100644 index 0000000..63bc4fd Binary files /dev/null and b/demos/SoftwareX_supp/optim_param/Optim_admm_rofllt.h5 differ diff --git a/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 b/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 new file mode 100644 index 0000000..03c0c14 Binary files /dev/null and b/demos/SoftwareX_supp/optim_param/Optim_admm_sbtv.h5 differ diff --git a/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 b/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 new file mode 100644 index 0000000..056d915 Binary files /dev/null and b/demos/SoftwareX_supp/optim_param/Optim_admm_tgv.h5 differ -- cgit v1.2.3