From e6842ec7f2cdbd46a004758bc3a6543012c6a74a Mon Sep 17 00:00:00 2001 From: dkazanc Date: Mon, 15 Apr 2019 14:47:36 +0100 Subject: old deleted --- src/Core/regularisers_CPU/DiffusionMASK_core.c | 427 ------------------------- src/Core/regularisers_CPU/DiffusionMASK_core.h | 65 ---- 2 files changed, 492 deletions(-) delete mode 100644 src/Core/regularisers_CPU/DiffusionMASK_core.c delete mode 100644 src/Core/regularisers_CPU/DiffusionMASK_core.h (limited to 'src') diff --git a/src/Core/regularisers_CPU/DiffusionMASK_core.c b/src/Core/regularisers_CPU/DiffusionMASK_core.c deleted file mode 100644 index a211015..0000000 --- a/src/Core/regularisers_CPU/DiffusionMASK_core.c +++ /dev/null @@ -1,427 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "DiffusionMASK_core.h" -#include "utils.h" - -#define EPS 1.0e-5 -#define MAX(x, y) (((x) > (y)) ? (x) : (y)) -#define MIN(x, y) (((x) < (y)) ? (x) : (y)) - -/*sign function*/ -int signNDF_m(float x) { - return (x > 0) - (x < 0); -} - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] which is constrained by the provided MASK. - * The minimisation is performed using explicit scheme. - * Implementation using the diffusivity window to increase the coverage area of the diffusivity - * - * Input Parameters: - * 1. Noisy image/volume - * 2. MASK (in unsigned char format) - * 3. Diffusivity window (half-size of the searching window, e.g. 3) - * 4. lambda - regularization parameter - * 5. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 6. Number of iterations, for explicit scheme >= 150 is recommended - * 7. tau - time-marching step for explicit scheme - * 8. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * 9. eplsilon - tolerance constant - - * Output: - * [1] Filtered/regularized image/volume - * [2] Information vector which contains [iteration no., reached tolerance] - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - -void swapVAL(unsigned char *xp, unsigned char *yp) -{ - unsigned char temp = *xp; - *xp = *yp; - *yp = temp; -} - -float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *SelClassesList, int SelClassesList_length, float *Output, float *infovector, int classesNumb, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ) -{ - long i,j,k,l; - int counterG, switcher; - float sigmaPar2, *Output_prev=NULL, *Eucl_Vec; - int DiffusWindow_tot; - sigmaPar2 = sigmaPar/sqrt(2.0f); - long DimTotal; - float re, re1; - re = 0.0f; re1 = 0.0f; - int count = 0; - unsigned char *MASK_temp, *ClassesList, CurrClass, temp; - DimTotal = (long)(dimX*dimY*dimZ); - - /* defines the list for all classes in the mask */ - ClassesList = (unsigned char*) calloc (classesNumb,sizeof(unsigned char)); - - /* find which classes (values) are present in the segmented data */ - CurrClass = MASK[0]; ClassesList[0]= MASK[0]; counterG = 1; - for(i=0; iHIGH the obtained values (classes) */ - for(i=0; i ClassesList[j+1]) { - temp = ClassesList[j+1]; - ClassesList[j+1] = ClassesList[j]; - ClassesList[j] = temp; - }}} - - /*Euclidian weight for diffisuvuty window*/ - if (dimZ == 1) { - DiffusWindow_tot = (2*DiffusWindow + 1)*(2*DiffusWindow + 1); - /* generate a 2D Gaussian kernel for NLM procedure */ - Eucl_Vec = (float*) calloc (DiffusWindow_tot,sizeof(float)); - counterG = 0; - for(i=-DiffusWindow; i<=DiffusWindow; i++) { - for(j=-DiffusWindow; j<=DiffusWindow; j++) { - Eucl_Vec[counterG] = (float)expf(-(powf(((float) i), 2) + powf(((float) j), 2))/(2.0f*DiffusWindow*DiffusWindow)); - counterG++; - }} /*main neighb loop */ - } - else { - DiffusWindow_tot = (2*DiffusWindow + 1)*(2*DiffusWindow + 1)*(2*DiffusWindow + 1); - Eucl_Vec = (float*) calloc (DiffusWindow_tot,sizeof(float)); - counterG = 0; - for(i=-DiffusWindow; i<=DiffusWindow; i++) { - for(j=-DiffusWindow; j<=DiffusWindow; j++) { - for(k=-DiffusWindow; k<=DiffusWindow; k++) { - Eucl_Vec[counterG] = (float)expf(-(powf(((float) i), 2) + powf(((float) j), 2) + powf(((float) k), 2))/(2*DiffusWindow*DiffusWindow*DiffusWindow)); - counterG++; - }}} /*main neighb loop */ - } - - if (epsil != 0.0f) Output_prev = calloc(DimTotal, sizeof(float)); - - MASK_temp = (unsigned char*) calloc (DimTotal,sizeof(unsigned char)); - - /* copy input into output */ - copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); - /* copy given MASK to MASK_upd*/ - copyIm_unchar(MASK, MASK_upd, (long)(dimX), (long)(dimY), (long)(dimZ)); - - /********************** PERFORM MASK PROCESSING ************************/ - if (dimZ == 1) { - #pragma omp parallel for shared(MASK,MASK_upd) private(i,j) - for(i=0; i continue */ - if (MASK_temp[j*dimX+i] == MASK[j*dimX+i]) { - /* !One needs to work with a specific class to avoid overlaps! It is - crucial to establish relevant classes first (given as an input in SelClassesList) */ - if (MASK_temp[j*dimX+i] == ClassesList[SelClassesList[l]]) { - /* i = 258; j = 165; */ - Mask_update2D(MASK_temp, MASK_upd, i, j, DiffusWindow, (long)(dimX), (long)(dimY)); - }} - }} - /* copy the updated mask */ - copyIm_unchar(MASK_upd, MASK_temp, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - } - - /* The mask has been processed, start diffusivity iterations */ - for(i=0; i < iterationsNumb; i++) { - if ((epsil != 0.0f) && (i % 5 == 0)) copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ)); - if (dimZ == 1) { - /* running 2D diffusion iterations */ - if (sigmaPar == 0.0f) LinearDiff_MASK2D(Input, MASK_upd, Output, Eucl_Vec, DiffusWindow, lambdaPar, tau, (long)(dimX), (long)(dimY)); /* constrained linear diffusion */ - else NonLinearDiff_MASK2D(Input, MASK_upd, Output, Eucl_Vec, DiffusWindow, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY)); /* constrained nonlinear diffusion */ - } - else { - /* running 3D diffusion iterations */ - //if (sigmaPar == 0.0f) LinearDiff3D(Input, Output, lambdaPar, tau, (long)(dimX), (long)(dimY), (long)(dimZ)); -// else NonLinearDiff3D(Input, Output, lambdaPar, sigmaPar2, tau, penaltytype, (long)(dimX), (long)(dimY), (long)(dimZ)); - } - /* check early stopping criteria if epsilon not equal zero */ - if ((epsil != 0.0f) && (i % 5 == 0)) { - re = 0.0f; re1 = 0.0f; - for(j=0; j 3) break; - } - } - - free(Output_prev); - free(Eucl_Vec); - free(MASK_temp); - /*adding info into info_vector */ - infovector[0] = (float)(i); /*iterations number (if stopped earlier based on tolerance)*/ - infovector[1] = re; /* reached tolerance */ - return 0; -} - - -/********************************************************************/ -/***************************2D Functions*****************************/ -/********************************************************************/ -float OutiersRemoval2D(unsigned char *MASK, unsigned char *MASK_upd, long i, long j, long dimX, long dimY) -{ - /*if the ROI pixel does not belong to the surrondings, turn it into the surronding*/ - long i_m, j_m, i1, j1, counter; - counter = 0; - for(i_m=-1; i_m<=1; i_m++) { - for(j_m=-1; j_m<=1; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - if (MASK[j*dimX+i] != MASK[j1*dimX+i1]) counter++; - } - }} - if (counter >= 8) MASK_upd[j*dimX+i] = MASK[j1*dimX+i1]; - return *MASK_upd; -} - -float Mask_update2D(unsigned char *MASK_temp, unsigned char *MASK_upd, long i, long j, int DiffusWindow, long dimX, long dimY) -{ - long i_m, j_m, i1, j1, CounterOtherClass; - - /* STEP2: in a larger neighbourhood check that the other class is present */ - CounterOtherClass = 0; - for(i_m=-DiffusWindow; i_m<=DiffusWindow; i_m++) { - for(j_m=-DiffusWindow; j_m<=DiffusWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - if (MASK_temp[j*dimX+i] != MASK_temp[j1*dimX+i1]) CounterOtherClass++; - } - }} - if (CounterOtherClass > 0) { - /* the other class is present in the vicinity of DiffusWindow, continue to STEP 3 */ - /* - STEP 3: Loop through all neighbours in DiffusWindow and check the spatial connection. - Meaning that we're instrested if there are any classes between points A and B that - does not belong to A and B (A,B \in C) - */ - for(i_m=-DiffusWindow; i_m<=DiffusWindow; i_m++) { - for(j_m=-DiffusWindow; j_m<=DiffusWindow; j_m++) { - i1 = i+i_m; - j1 = j+j_m; - if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - if (MASK_temp[j*dimX+i] == MASK_temp[j1*dimX+i1]) { - /* A and B points belong to the same class, do STEP 4*/ - /* STEP 4: Run Bresenham line algorithm between A and B points - and convert all points on the way to the class of A/B. */ - bresenham2D(i, j, i1, j1, MASK_temp, MASK_upd, (long)(dimX), (long)(dimY)); - } - } - }} - } - return *MASK_upd; -} - -/* MASKED-constrained 2D linear diffusion (PDE heat equation) */ -float LinearDiff_MASK2D(float *Input, unsigned char *MASK, float *Output, float *Eucl_Vec, int DiffusWindow, float lambdaPar, float tau, long dimX, long dimY) -{ - -long i,j,i1,j1,i_m,j_m,index,indexneighb,counter; -unsigned char class_c, class_n; -float diffVal; - -#pragma omp parallel for shared(Input) private(index,i,j,i1,j1,i_m,j_m,counter,diffVal,indexneighb,class_c,class_n) - for(i=0; i= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - indexneighb = j1*dimX+i1; /* neighbour pixel index */ - class_c = MASK[index]; /* current class value */ - class_n = MASK[indexneighb]; /* neighbour class value */ - - /* perform diffusion only within the same class (given by MASK) */ - if (class_n == class_c) diffVal += Output[indexneighb] - Output[index]; - } - counter++; - }} - Output[index] += tau*(lambdaPar*(diffVal) - (Output[index] - Input[index])); - }} - return *Output; -} - -/* MASKED-constrained 2D nonlinear diffusion */ -float NonLinearDiff_MASK2D(float *Input, unsigned char *MASK, float *Output, float *Eucl_Vec, int DiffusWindow, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY) -{ - long i,j,i1,j1,i_m,j_m,index,indexneighb,counter; - unsigned char class_c, class_n; - float diffVal, funcVal; - -#pragma omp parallel for shared(Input) private(index,i,j,i1,j1,i_m,j_m,counter,diffVal,funcVal,indexneighb,class_c,class_n) - for(i=0; i= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { - indexneighb = j1*dimX+i1; /* neighbour pixel index */ - class_c = MASK[index]; /* current class value */ - class_n = MASK[indexneighb]; /* neighbour class value */ - - /* perform diffusion only within the same class (given by MASK) */ - if (class_n == class_c) { - diffVal = Output[indexneighb] - Output[index]; - if (penaltytype == 1) { - /* Huber penalty */ - if (fabs(diffVal) > sigmaPar) funcVal += signNDF_m(diffVal); - else funcVal += diffVal/sigmaPar; } - else if (penaltytype == 2) { - /* Perona-Malik */ - funcVal += (diffVal)/(1.0f + powf((diffVal/sigmaPar),2)); } - else if (penaltytype == 3) { - /* Tukey Biweight */ - if (fabs(diffVal) <= sigmaPar) funcVal += diffVal*powf((1.0f - powf((diffVal/sigmaPar),2)), 2); } - else { - printf("%s \n", "No penalty function selected! Use Huber,2 or 3."); - break; } - } - } - counter++; - }} - Output[index] += tau*(lambdaPar*(funcVal) - (Output[index] - Input[index])); - }} - return *Output; -} -/********************************************************************/ -/***************************3D Functions*****************************/ -/********************************************************************/ - - -int bresenham2D(int i, int j, int i1, int j1, unsigned char *MASK, unsigned char *MASK_upd, long dimX, long dimY) -{ - int n; - int x[] = {i, i1}; - int y[] = {j, j1}; - int steep = (fabs(y[1]-y[0]) > fabs(x[1]-x[0])); - int ystep = 0; - - //printf("[%i][%i][%i][%i]\n", x[1], y[1], steep, kk) ; - //if (steep == 1) {swap(x[0],y[0]); swap(x[1],y[1]);} - - if (steep == 1) { - - // swaping - int a, b; - - a = x[0]; - b = y[0]; - x[0] = b; - y[0] = a; - - a = x[1]; - b = y[1]; - x[1] = b; - y[1] = a; - } - - if (x[0] > x[1]) { - int a, b; - a = x[0]; - b = x[1]; - x[0] = b; - x[1] = a; - - a = y[0]; - b = y[1]; - y[0] = b; - y[1] = a; - } //(x[0] > x[1]) - - int delx = x[1]-x[0]; - int dely = fabs(y[1]-y[0]); - int error = 0; - int x_n = x[0]; - int y_n = y[0]; - if (y[0] < y[1]) {ystep = 1;} - else {ystep = -1;} - - for(n = 0; n= delx) { - y_n = y_n + ystep; - error = error - delx; - } // (2*error >= delx) - //printf("[%i][%i][%i]\n", X_new[n], Y_new[n], n) ; - } // for(int n = 0; n -#include -#include -#include -#include "omp.h" -#include "utils.h" -#include "CCPiDefines.h" - - -/* C-OMP implementation of linear and nonlinear diffusion [1,2] which is constrained by the provided MASK. - * The minimisation is performed using explicit scheme. - * Implementation using the Diffusivity window to increase the coverage area of the diffusivity - * - * Input Parameters: - * 1. Noisy image/volume - * 2. MASK (in unsigned short format) - * 3. Diffusivity window (half-size of the searching window, e.g. 3) - * 4. lambda - regularization parameter - * 5. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion - * 6. Number of iterations, for explicit scheme >= 150 is recommended - * 7. tau - time-marching step for explicit scheme - * 8. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight - * 9. eplsilon - tolerance constant - - * Output: - * [1] Filtered/regularized image/volume - * [2] Information vector which contains [iteration no., reached tolerance] - * - * This function is based on the paper by - * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. - * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. - */ - - -#ifdef __cplusplus -extern "C" { -#endif -CCPI_EXPORT float DiffusionMASK_CPU_main(float *Input, unsigned char *MASK, unsigned char *MASK_upd, unsigned char *SelClassesList, int SelClassesList_length, float *Output, float *infovector, int classesNumb, int DiffusWindow, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ); -CCPI_EXPORT float LinearDiff_MASK2D(float *Input, unsigned char *MASK, float *Output, float *Eucl_Vec, int DiffusWindow, float lambdaPar, float tau, long dimX, long dimY); -CCPI_EXPORT float NonLinearDiff_MASK2D(float *Input, unsigned char *MASK, float *Output, float *Eucl_Vec, int DiffusWindow, float lambdaPar, float sigmaPar, float tau, int penaltytype, long dimX, long dimY); -CCPI_EXPORT float OutiersRemoval2D(unsigned char *MASK, unsigned char *MASK_upd, long i, long j, long dimX, long dimY); -CCPI_EXPORT float Mask_update2D(unsigned char *MASK_temp, unsigned char *MASK_upd, long i, long j, int DiffusWindow, long dimX, long dimY); -CCPI_EXPORT int bresenham2D(int i, int j, int i1, int j1, unsigned char *MASK, unsigned char *MASK_upd, long dimX, long dimY); -#ifdef __cplusplus -} -#endif -- cgit v1.2.3