% Demonstration of tomographic reconstruction from noisy and corrupted by % artifacts undersampled projection data using Students't penalty % Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle) % see ReadMe file for instructions clear all close all % adding paths addpath('data/'); addpath('main_func/'); addpath('supp/'); load phantom_bone512.mat % load the phantom load my_red_yellowMAP.mat % load the colormap % load sino1.mat; % load noisy sinogram N = 512; % the size of the tomographic image NxN theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi) theta_rad = theta*(pi/180); % conversion to radians P = 2*ceil(N/sqrt(2))+1; % the size of the detector array ROI = find(phantom > 0); zing_rings_add; % generating data, adding zingers and stripes %% fprintf('%s\n', 'Direct reconstruction using FBP...'); FBP_1 = iradon(sino_zing_rings', theta, N); fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:))); figure(1); subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar; colormap(cmapnew); %% fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); clear params % define parameters params.sino = sino_zing_rings; params.N = N; % image size params.angles = theta_rad; % angles in radians params.iterFISTA = 180; %max number of outer iterations params.X_ideal = phantom; % ideal phantom params.ROI = ROI; % phantom region-of-interest params.show = 0; % visualize reconstruction on each iteration params.slice = 1; params.maxvalplot = 0.6; params.weights = Dweights; % statistical weighting tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc; fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction is:', min(error_FISTA(:))); figure(2); clf %set(gcf, 'Position', get(0,'Screensize')); subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar; colormap(cmapnew); figure(3); clf subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar; colormap(cmapnew); %% fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); clear params % define parameters params.sino = sino_zing_rings; params.N = N; % image size params.angles = theta_rad; % angles in radians params.iterFISTA = 200; % max number of outer iterations params.lambdaTV = 5.39e-05; % regularization parameter for TV problem params.tol = 1.0e-04; % tolerance to terminate TV iterations params.iterTV = 20; % the max number of TV iterations params.X_ideal = phantom; % ideal phantom params.ROI = ROI; % phantom region-of-interest params.weights = Dweights; % statistical weighting params.show = 0; % visualize reconstruction on each iteration params.slice = 1; params.maxvalplot = 0.6; tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc; fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction is:', min(error_FISTA_TV(:))); figure(4); clf subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar; colormap(cmapnew); figure(5); clf subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar; colormap(cmapnew); %% fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); clear params % define parameters params.sino = sino_zing_rings; params.N = N; % image size params.angles = theta_rad; % angles in radians params.iterFISTA = 60; % max number of outer iterations params.lambdaTV = 0.002526; % regularization parameter for TV problem params.tol = 1.0e-04; % tolerance to terminate TV iterations params.iterTV = 20; % the max number of TV iterations params.X_ideal = phantom; % ideal phantom params.ROI = ROI; % phantom region-of-interest params.weights = Dweights; % statistical weighting params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector" params.show = 0; % visualize reconstruction on each iteration params.slice = 1; params.maxvalplot = 0.6; tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc; fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:))); figure(6); clf subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar; subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar; colormap(cmapnew); figure(7); clf subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar; colormap(cmapnew); %% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); clear params % define parameters params.sino = sino_zing_rings; params.N = N; % image size params.angles = theta_rad; % angles in radians params.iterFISTA = 67; % max number of outer iterations %params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence) params.lambdaTV = 0.00152; % regularization parameter for TV problem params.tol = 1.0e-04; % tolerance to terminate TV iterations params.iterTV = 20; % the max number of TV iterations params.X_ideal = phantom; % ideal phantom params.ROI = ROI; % phantom region-of-interest params.weights = Dweights; % statistical weighting params.fidelity = 'student'; % selecting students t fidelity params.show = 0; % visualize reconstruction on each iteration params.slice = 1; params.maxvalplot = 0.6; tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc; fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:))); figure(8); set(gcf, 'Position', get(0,'Screensize')); subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar; colormap(cmapnew); figure(9); subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar; subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar; colormap(cmapnew); %% % print all RMSE's fprintf('%s\n', '--------------------------------------------'); fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:))); fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:))); fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:))); fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:))); fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:))); %