1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  | 
import numpy as np
#from PIL import Image
"""
class TiffReader(object):
    def imread(self, filename):
        return np.asarray(Image.open(filename))
"""
class BinReader(object):
	def imread(self, filename):
		w, h = 512, 512
		with open(filename, mode='rb') as f:
			return np.fromfile(f,dtype=np.uint8,count=w*h).reshape(h,w)
###############################################################################
def printParametersToString(pars):
    txt = r''
    for key, value in pars.items():
        if key == 'algorithm':
            txt += "{0} = {1}".format(key, value.__name__)
        elif key == 'input':
            txt += "{0} = {1}".format(key, np.shape(value))
        elif key == 'refdata':
            txt += "{0} = {1}".format(key, np.shape(value))
        else:
            txt += "{0} = {1}".format(key, value)
        txt += '\n'
    return txt
def nrmse(im1, im2):
    rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(im1.size))
    max_val = max(np.max(im1), np.max(im2))
    min_val = min(np.min(im1), np.min(im2))
    return 1 - (rmse / (max_val - min_val))
def rmse(im1, im2):
    rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size))
    return rmse
###############################################################################
  |